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PREFACE

Calculation procedures for nonreacting compressible two- and three-
dimensional turbulent boundary layers are reviewed. A summary of integral,
transformation, and correlation methods, as well as finite-difference solutions
of the complete boundary-layer equations is included. Alternative numerical
solution procedures are examined, and both mean field and mean turbulence field
closure models are considered. A discussion of physics and related calculation
problems peculiar to compressible turbulent boundary layers is included. A
listing of available solution procedures (finite-difference, finite-element, and
weighted-residual methods) is provided. Detailed consideration is given to
influence of compressibility, low Reynolds number, wall blowing, and pressure
gradient upon mean field closure constants.

The information contained in this publication was presented at the 1976

Von Karmén Institute for Fluid Dynamics Lecture Series "Compressible Turbulent
Boundary Layers," March 1-5, 1976, Rhode-St.-Genése, Belgium.
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INTRODUCTION

The design of missiles, manned and unmanned entry vehicles, and transporta-
tion systems capable of speeds in the transonic and supersonic regimes requires
detailed information on such boundary-layer quantities as skin friction, aero-
dynamic heating, and viscous displacement thickness and mass flow. Typical com-
ponents requiring such design information include nacelles, control surfaces,
turbomachinery blading, nozzles, airfoils and fuselage, inlets, and combustors.
Detailed boundary-layer predictions are also needed for the design of facilities
used in experimental investigations.

The various stages of design demand boundary-layer information in increas-
ing detail. For this reason and also because flow complexity varies considera-
bly (depending upon the design and component), a heirarchy of calculation pro-
cedures has been developed over the years, ranging from simple, "back of the
envelope" methods to complex, numerical approaches which require use of the
largest digital computers. In the present paper this entire gamut of methods is
reviewed, with emphasis on the more complete procedures which solve numerically
the partial-differential equations governing boundary-layer motion and on the
influence of conditions usually encountered in practice (such as pressure gradi-
ent, mass injection, and low Reynolds number) upon the necessary closure "con-
stants" used in representing the turbulent shear. Also included is a detailed
discussion of some physics and resultant calculation problems which are peculiar
to compressible turbulent boundary layers. The basic purpose of this volume is
to provide a ready reference and introduction to the various procedures cur-
rently available for calculation of compressible turbulent boundary layers.
Therefore, also included is a listing of available methods of the more complete
type and some discussion of the various alternate numerical procedures which can
be used for solving the nonlinear partial-differential equations governing fluid
motion in compressible turbulent boundary layers. This review does not include
detailed consideration of time-dependent boundary layers, relaminarization, and
heterogeneous or chemically reacting flows.

SYMBOLS
A Van Driest damping factor (eq. (41))
At = AuT /v
a speed of sound
aq = u'v'/2e
Ce skin friction coefficient, Ty % peue2
Cr,o skin friction coefficient without wall blowing

c wing chord



Cp specific heat at constant pressure

d unit length
e turbulent kinetic energy, %(u'Z +v'2 4 w'2)
F mass flow parameter, puVy/PeUeg
FC,FRX,FRe functions from Spalding and Chi (ref. 81)
G = U2/U2,e

ul. 5
H total enthalpy, h + E_’ also form factor, e
H = uz/uy,e (eq. (95))

# *

Hi = 8i/64
h static enthalpy

hq,hp,h3 metric coefficients

K Prandtl constant

K factor for variable grid spacing, Anp,1/4ny,

L reference length; also dissipation length scale (fig. 48)
1 mixing length

M Mach number

m mass flow

NNu Nusselt number, (Ng¢)(Npp)(Re x)

Npp molecular Prandtl number

Nppr,T total turbulent Prandtl number, €/KT

Npr, ¢ static turbulent Prandtl number, €/K¢

Nst Stanton number, qy/pgueCp(Tay - Ty)

p pressure

pt pressure gradient parameter, (vue/uT3)(due/dX)
q wall heat transfer rate




S

S+

Reynolds number, pu/y; also universal gas constant
transverse radius of curvature

nose radius

temperature

velocity components in x-, y-, and z-directions
general velocity notation (i = 1, 2, 3)

= u/ug

Van Driest's generalized velocity

friction velocity, (‘l'w/pw)V2

total velocity vector

Cartesian coordinates

curvilinear coordinates (i = 1, 2, 3)

= yuq/V

Clauser constant; also angle of attack

pressure gradient parameter, (GI/TW)(dp/dx)
intermittency function

streamwise intermittency function

normal intermittency function

ratio of specific heats

boundary-layer thickness

§
displacement thickness, 1 - _PY )\ dy
0 Pele

dynamic eddy viscosity

transformed normal coordinate, Crocco (eq. (91))

transformed normal coordinate, Levy-Lees (eq. (32)); also transformed

transverse coordinate for Crocco variables (see fig. 53)



8
0 momentum thickness, f ﬂ‘_<1 - u_) dy
Pele Ue
g

“T - gﬁ?ay
Kg, = v'h!

v ah/3dy
u molecular viscosity
\Y kinematic viscosity
I3 transformed streamwise coordinate (eq.

Crocco variables

p density
o kinematic eddy viscosity (eq. (40))
T shear stress
o shear function (eq. (92))
o spreading angle (fig. 5)
¢ circumferential angle
Y stream function
w vorticity
Subscripts:
aw adiabatic wall
bl boundary layer
er critical value
e local edge of boundary layer
eff effective value
i incompressible
i,j,k indices
L reference length

= T/Tg

(31)); also xq-coordinate for




max maximum value

n index integer

o) stagnation value

p region of peak ;TE

t total

tr transition value

vo based on virtual origin location
X based on distance coordinate x
Xi coordinate direction (i = 1, 2, 3)
w wall value

) based on momentum thickness

o free stream

A prime denotes a fluctuating quantity.

A bar indicates a mean quantity.

MAJOR GENERAL REFERENCES

The major reference books pertinent to the calculation of compressible tur-
bulent boundary layers were mainly written in two distinct time frames: late
fifties to early sixties (refs. 1 to 5) and late sixties to early seventies
(refs. 6 to 12). Of these works, the ones most useful in the preparation of the
present volume on calculation methods included references 2, 5, 8, 9, and 12.
Several review and background articles are also available (e.g., refs. 13 to 25).
All of these were quite valuable, especially the papers of Reynolds (refs. 19
and 20) and Bradshaw (ref. 22). Another category of general references is con-
ference proceedings (e.g., refs. 26 to 30). These are excellent sources, partic-
ularly for comparisons between data and theory (especially refs. 28 and 30).
Reference 26 contains many of the fundamental concepts, such as the Morkovin
hypothesis, which are the foundation for the current generation of compressible
calculation procedures. A final category of general references includes reviews
of available data (e.g., refs. 11 and 31 to 37), which are especially important
for evaluation of test cases suitable to "calibrate" the various turbulence clos-
ure constants.



EQUATIONS AND CLOSURE METHODS
Governing Differential Equations

The basic differential equations governing compressible turbulent boundary-
layer flow are (1) a statement of the conservation of mass, (2) momentum equa-
tions obtained from the Navier-Stokes equations, and (3) an expression for the
conservation of energy. Also needed for solution is an equation of state (ideal
gas assumed herein) and equations for molecular transport properties.

Given this set of equations it is conceptually possible to integrate for-
ward in time on a computer and, given sufficient grid resolution, obtain the tur-
bulent motions "exactly" with very little empiricism. However, as noted in ref-
erence 12 and elsewhere, the computer capacity currently available falls several
orders of magnitude short of the capability needed for such a solution. There-
fore, one must resort to the usual Reynolds averaging, where the flow is repre-
sented by a time mean and an instantaneous fluctuation; for example,

u=1u+u' V=v+vV'

where the following averaging rules apply:

uv' =0 u'v' # 0

To simplify the problem for ease of solution, with very little loss of accuracy
(ref. 38), order of magnitude arguments are made (usually referred to as the
boundary-layer assumptions); that is,

X >>y u >> v 3_<<3_
ax dy

The resultant set of governing equations in surface curvilinear coordinates for
the steady, two-dimensional boundary-layer flow (8/r, << 1) of a compressible
ideal gas (in the turbulent state) are

Conservation of mass:

3P , 3PV - o (1)
ox ay
Longitudinal momentum:
pudl 4 pv U = ~ 3P 4+ 3 |y 3TW - (pv)'u’ (2)
ox y ax y y
Normal momentum:
B - -3 [Gviver (3)
b= -2 [tnv]




Conservation of energy:

—Bﬁ —aﬁ_a _}J_aﬁ 3ﬁ2 "h! - T Ty !

pu i  pv o - 9 o 4+ (Npp, - 1) - (pv)'h uf (pv)'u

Ix dy 9y | Npp [By Pr 2 9y 2 (H)
Detailed discussion and derivation of these equations are available in refer-

ences 2, 12, 39, 40, and 41. The equations are also given in references 42 and
43, in terms of mass-weighted dependent variables.

There are two points to be made concerning these basic equations (eqs. (1)
to (4)). First of all, in the averaging process the usual new unknowns have
appeared (shown underlined) which account for the turbulent fluxes of momentum
and energy. The specification of these quantities, in terms of known parame-
ters, comprises the major difficulty in the calculation of compressible turbu-
lent boundary layers and is usually termed the "closure problem." The other
point concerns the term pV. Expanded out, this term is

pv =p VvV +p'v (5)

Since p'v' appears in the equations with normal or y-derivitives, the
term is not negligible and must be accounted for. Fortunately, po'v' always
appears with P Vv, and therefore, a new definition of v can be used

~ -—

V=7 +02'V (6)

(which is actually a mass-weighted variable), and the influence of p'v' can
be included implicitly in the solution. This approach is satisfactory as long
as the actual Vv value is not required. If ¥ values must be computed, some
model of p'v' is obviously necessary. This inclusion of p'v' is an impor-
tant issue. If the Pv term were not handled in the manner shown in equa-
tions (2) and (4), then two Reynolds stress terms appear: u P'v' and P u'v'.
Morkovin, in reference 44, shows that G p'v'/0 u'v' (or the ratio of the com-
pressibility term to the usual low-speed Reynolds stress term) can be of the
order of 0.6 to 1.0 for a supersonic boundary layer, and therefore p'v' would
have to be accurately modeled (an extremely difficult task).

Closure Methods

In the present paper the usual breakdown of closure procedures (e.g.,
ref. 45) into (1) simple or zeroth-order methods, (2) first-order or mean field

closure methods, and (3) second-order or mean turbulence field closure methods
is followed.

The zeroth-order case consists of two major subcategories: integral
approaches and empirical laws, such as Cg¢ correlations. In the most general
of these approaches, the integral methods, equations (1) to (4) are formally
integrated in the normal or y-direction. As a result of this procedure the
unknown turbulent flux terms disappear, but their influence is still present in
that profiles must be supplied (assumed, obtained from data, etc.), and these pro-
files are influenced to a great extent by the turbulence induced fluxes. There-
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fore, the simple or zeroth-order procedures are characterized by a requirement
for substantial amounts of empiricism.

In the mean field closure approaches the partial-differential equations are
solved directly (eqs. (1) to (4)) and the turbulent flux terms are related to
mean flow quantities. This approach is nearly correct (and indeed quite exact)
for slowly varying flows and over a wide variety of boundary conditions. At the
present time this closure approach is tending to supplant the integral approaches
in industrial application, primarily as a result of a greater reliability (accu-
racy of prediction) over a wide range of conditions and routine use of high-
speed computers. This increased capability is purchased at the expense of con-
siderably increased computer time (compared with the best of the integral
methods) .

In mean turbulent field closure, the differential equations (derived from
the Navier-Stokes equations, as described in a later section) governing the tur-
bulence flux terms are solved. These new equations involve additional unknowns,
but the mean profiles generally are relatively insensitive to the precise
details of the modeling in these second-order equations. This approach has actu-
ally had limited application to the compressible boundary-layer case (primarily
as a result of the success of the mean field methods) and is really needed only
in cases where the flow undergoes a sudden change in boundary condition or expe-
riences a large gradient (a situation generally termed nonequilibrium).

The usual range of application of each of these three closure approaches is
indicated schematically as follows:

EQUILIBRIUM |  NEAR EQUILIBRIUM NONEQUILIBRIUM
«ZERO OR EQUILIBRIUM  *MODERATE DEPARTURES +SUDDEN APPLICATION OR
GRADIENTS OF FROM ZERO OR REMOVAL OF LARGE
PRESSURE, WALL EQUILIBRIUM GRADIENTS IN WALL
TEMPERATURE, AND GRADIENTS TEMPERATURE ,
WALL INJECTION PRESSURE, WALL
INJECTION
«HIGH REYNOLDS NUMBER LOW REYNOLDS NUMBER +TRANSITIONAL FLOWS
| ZEROTH ORDER METHODS
| MEAN F1ELD METHODS B
| MEAN TURBULENCE FIELD METHODS (WITH LENGTH SCALE EQUATION) |

In the present review an operational definition of equilibrium is used, taken
from reference 46: [@quilibrium refers] "to a layer that has completely settled
down after a discontinuity and is developing with its new boundary conditions
with no 'memory' of the discontinuity." Succeeding portions of the present
report cover these three closure approaches in considerable detail, especially
the mean field approaches.

8




FLOW PHENOMENA PECULIAR TO CALCULATION OF COMPRESSIBLE

TURBULENT BOUNDARY LAYERS

Calculation procedures for compressible turbulent boundary layers are
based, to a great extent, upon techniques, modeling constants, etc., developed
originally for the low-speed case. This section discusses many of the signifi-
cant differences and new or altered physics which occur in the compressible
case, as compared with the low-speed situation. The discussion is intended to
aid in evaluating the applicability of low-speed results to the compressible
(particularly high Mach number) case and to indicate possible pitfalls and
sources of inaccuracy in the calculation of compressible turbulent boundary
layers.

Normal Pressure Gradient

Shown in figure 1 are typical static-pressure distributions measured across
high Mach number turbulent boundary layers (two cases are shown, helium (ref. U7)
and nitrogen (ref. 48)). In both cases the boundary layer involved was on a
nozzle wall with only a small local longitudinal pressure gradient, although
there are significant free-stream static-pressure variations due to uncanceled
Mach waves. (See ref. 48.) Two points are obvious from this figure: the static
pressure is not constant across these high Mach number turbulent boundary layers
(dp/3y = 0 for M+ 0), and the wall pressure value is greater than the edge
value by approximately 50 percent for these cases (M~ 20).

A possible origin of at least a portion of this nonconstant p(y) can be
readily seen from a simple examination of equation (3) (normal momentum equation)

P ~ - g_(ﬁv'Z) (1)

or

D+ P v'2~ Constant (8)

Evaluating this expression between the region of peak vt (y/8 = 0(0.1) and
Pp ¥ Pe from fig. 2) and the wall, one obtains '

12
Py~ Pe + [ Peue? R (9)
ue2
where 5p ~ f pg or
7 12
Pw~ 14 yM2 YR (10)
Pe ue2

Limited data (e.g., ref. 49) indicate that the nondimensional velocity fluctua-
tion levels in boundary layers are not significantly influenced by Mach number,



and therefore a reasonable value for \/v, ﬂ /ue of 0.06 was used (from low-

speed data). Using f =@ 0.2 and y &= 1. equation (10) becomes (to correct
order of magnitude)

Pw . 14 (1073) M2 (1)
Pe

and indicates a possible dominant influence of Mach number upon the nonconstant
p(y) phenomenon, although the influence may not be as strong as M2 due to f
being a function of M. Shown in figure 2 (from ref. 50) is a comparison
between this simple prediction (eq. (11)) and most of the available data. The
relatively good agreement between the present simple expression (eq. (11}) and
the available data (fig. 2) may indicate that at least some of the nonconstant
p(y) effect is caused by the turbulence field. This is probably aggravated at
high Mach number by the fact that the dynamic pressure associated with the turbu-
lent fluctuations becomes a significant fraction of the static pressure level at
high Mach number. Research by Finley (ref. 51) indicates that most of the

Pw > Pe problem is due primarily to inviscid disturbances whose detailed influ-
ence is modified by the turbulence effect just described.

Calculation experience indicates that the large p changes associated with
static temperature variations for high Mach number boundary layers (a change in
density by a factor of approximately 100 for M =~ 20, T, + Ty, and Yy = 5/3)
greatly override the py,/pg > 1 effect and therefore, while interesting, the
Py/Pe > 1 effect is not currently considered first order for calculating high
Mach number boundary-layer flows.

Influence of Compressibility and Density Fluctuation Terms

There are no definitive, detailed measurements of the complete second-order
correlations in a highly compressible flow (including p' and p' terms) with
which to assess, in a straightforward manner, the influence of compressibility
and density fluctuation terms upon closure models used in the calculation of com-
pressible turbulent boundary layers. There is evidently a true Mach number
effect on turbulence structure for free flows (ref. 52), at least for the free
shear layer case at high Reynolds number with a sustained Mach number difference
across the shear layer. However, no important compressibility (p', p') influ-

ence has ever been isolated for the boundary-layer case (except for p'v'; see
discussion following eq. (6)). Detailed consideration of this area is beyond
the scope of the present paper; the purpose here is merely to warn the reader
that the following arguments concerning the relative absence of noticeable com-
pressibility effects are deductive. There does not yet exist a definitive set
of measurements to completely lay to rest the question of possible compressibil-
ity effects upon turbulence structure, although Morkovin's arguments (ref. 26,
pp. 367-380), which were based upon hot-wire data up to M = 5 where p'
effects were neglected, have proved thus far to be correct.

Fluctuating Mach number.- One method of evaluating the possible influence
of compressibility upon turbulence structure is to examine the magnitude of the
fluctuating Mach number M'; that is,

10
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MY~ U Ma' (12)

a a
For the case of maximum p' (i.e., Ty ~+ Tt,e and Ti(y) = Constant) near the
edge of the sublayer
T
oo UM (=2 (13)
a Ug T

u' Lut Mo (14)
a  Ue 1 4 M2
5
which is only of the order of 0.2 for high M, and u'/ug =~ 0.1. Therefore the
main term in equation (12) is the second one (M a'/a), which, for a'/a = 0(0.1),
can be of the order of 1 or greater for high Mg,. Therefore, for the high hyper-

sonic case the fluctuating Mach number can be of the order of 1 and compressibil-
ity effects may become important for accurate turbulence modeling.

Presence of p' terms in Reynolds stress expression.- In equation (2) the

complete Reynolds stress term is (pv)'u'. Expanding this term (ref. 13) one
obtains

(pv)'u' = p u'v' + ¥V p'u' + plu'v' (15)

Using the usual order of magnitude arguments, Vv << p and p' << p,

(pv)'u'=~ p u'v’' (16)

A ”“-—-@w

within an accuracy of approximately 20 percent. Calculation experience (e.g.,
ref. 53) indicates that the p' terms in the Reynolds stress equation (eq. (15))
are only important for the case where ¢/ 1is relatively small (e/u < 100).
Therefore, for the calculation of compressible turbulent boundary layers the
Reynolds stress term generally assumes the same form as the low-speed case

‘ (p u'v'). This does not imply, however, that u'v' can be modeled in the same
manner (or has similar values) as in the low-speed case.

Comparison of Mean Static Temperature and Turbulent Kinetic Energy

As will now be shown, there is a possibility that, for high Mach numbers,
the static temperature can be of the same order of magnitude as the temperature
equivalence of the energy associated with the turbulent velocity fluctuations.
The basic problem is most easily seen by beginning with the expression for
instantaneous total enthalpy

2

N
z
N

H = Cth = CpT + +

+ We (n

ch
r\)|<
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The use of Reynolds time averaging (and recognizing that W = 0 for two-
dimensional boundary layers) yields

(18)

or

Ta=Tp -02 -wWe,ve, we, v (19)

I II IIT

In order to determine the static temperature from a boundary-layer solution,
some form of equation (19) is generally employed, using terms I and II only.
Term III has been almost universally neglected. For Mg =~ 22, Ty -+ Tt es» and
Miocal = 10 (i.e., at y/8 = 0.5) in air, the usual terms (I and II) yield

T/Ty ~ 0.0476. Assuming u'/ug =~ 0.05, the additional (high M) term (III)
yields a value of approximately 0.0075, or approximately 16 percent of the value
of terms I and II combined. Similar comparisons over the Mach number range are
shown in figure 3.

What this discussion indicates is that for very high Mach numbers,
Tt ~ G2/2¢, and Tstatlc can become of the same order as the temperature equiv-
alence of ghe energy associated with the turbulent motions. Since the intensity
of the turbulence is not generally known to within an accuracy of approximately
20 to 30 percent and Tgtatije can depend upon the square of the intensity
(eq. (19)), the accuracy of the computed mean density field for extremely high
Mach number turbulent boundary layers could be quite poor.

Precursor Transition Effect

The precursor transition effect is characterized by the existence of large-
scale disturbances (and subsequent breakdown into turbulence) in the outer
region of compressible boundary layers far upstream of the nominal wall transi-
tion point. (See fig. U for typical schlieren photographs of this behavior.)
This phenomenon is quite commonly observed (e.g., refs. 54 to 56). The spreading
rates and possible structure of these disturbances were examined in reference 57
(see fig. 5, taken from ref. 57), while an attempt to model their influence in a
mean field closure procedure is reported in reference 58. The major impact of
this phenomenon upon the calculation of turbulent boundary layers is that at the
nominal wall transition location, the outer portion of the profile is already
transitional and turbulent in nature (see fig. 6, taken from ref. 58), and there-
fore, the usual procedure of starting the calculation at the beginning of the
wall transition location with a laminar profile cannot be followed.

A simple method of including this phenomenon is to start the calculation
upstream of the wall transition location (with a laminar-like profile) where the
transition bursts first initiate. (See ref. 59.) Figure 7 shows a possible fur-
ther manifestation of this effect - an increase in surface heating upstream of
the nominal wall transition point as usually defined (taken from ref. 60). As a

12




result of the outward movement of the critical layer with Mach number (fig. 8
(from ref. 61) for near adiabatic conditions), this precursor effect occurs fur-
ther upstream and becomes more important as Mach number increases. Unless a
measured starting profile is available, accurate compressible-boundary-layer cal-
culations, at least for the low to moderate Reynolds number range, should include
some consideration of this precursor influence. (See also ref. 32.) Experimen-
tal evidence indicates that the magnitude of the precursor transition effect may
be influenced by T,/Te, the effect perhaps becoming less pronounced at lower
values of Ty /T,.

Large p' Levels

The usual assumption in second-order closure approaches is that most
pressure fluctuation terms, especially the so-called pressure-dilitation terms
(ref. 52) can be neglected. The reasons for this assumption are threefold:

(1) The limited data for low speeds indicate that these terms are indeed small;
(2) since M' 1is usually small, the influence of compressibility (which is pri-
marily represented in the second-order approaches by the p' terms) must be
small; (3) there is an absence of data concerning the actual magnitude of these
terms. Although no data for the terms themselves exist, there is limited data
for p' itself, which will now be examined.

Figure 9 indicates the level of rms wall-pressure fluctuations (normalized
by the external mean static pressure) as a function of Mach number (from
ref. 47). These data indicate that for moderate hypersonic Mach numbers
(M~ 8 to 12) the wall-pressure fluctuation levels approach 10 percent, which is
a fluctuation level typical of the longitudinal velocity field. 1In fact, data
from reference 62 at Mg = 9.4 indicate that the turbulence is dominated by
high-frequency pressure fluctuations.

The distribution of p' with distance away from the wall is shown in fig-
ure 10 (from ref. 62). These data indicate that p' levels are large, not only
at the wall, but across the sensibly turbulent portion of the boundary layer.
The p' intensity diminishes only in the outer (intermittent) portion of the
flow. Therefore, the p' levels for hypersonic turbulent boundary layers can
evidently be large; this calls for a close, careful examination of second-order
closure schemes for the high M case (and also for separated flows, where p'
levels are large even at low Mach number). Of especial importance are p'
terms such as p'(3uj/dxy). (See also ref. 63.)

Definition of Boundary-Layer Thickness

Difficulty in defining the boundary-layer thickness occurs because of large
differences between Gpitot and 5velocity for high M boundary layers. A
typical result for M~ 20 (from ref. 47) is shown in figure 11, where the nom-
inal Gvelocity is approximately 50 percent of sdensity (or 8pjtot). The
pitot edge is easier to measure but there are two fundamental questions: with
a relative absence of mean shear above GVelocity’ what is the turbulence shear
stress (and turbulence eddy) content in this region, and what thickness does one
use to scale conventional mean field closure models (such as mixing length) for

13



the high M case? These questions also involve the fact, as previously dis-
cussed, that the density becomes difficult to determine accurately for high M
because it is a small difference between two large numbers. These questions are
still open, but limited information (for instance, ref. 64) indicates that
Gvelocity should be used as the scaling function.

Energy Loss Via Acoustic Waves

This sub ject has received little attention since the original work of
Laufer (ref. 26, pp. 381-393). The physical problem arises because of the
increasing intensity of turbulent boundary-layer sound radiation with increasing
Mach number. For large enough radiated sound levels the amount of energy car-
ried by these waves can be appreciable and represents a new energy dissipation
mechanism in high Mach number compressible flows.

In reference 26 Laufer computed that for Mg = 5, the energy radiated away
is approximately 1 percent of the work done by turbulent shear and therefore is
negligible. However, if Laufer's equations hold for the case with Mg = 20,
Tw/Tg = 1, and Yy = 5/3, the same calculation yields radiated energy of 25 per-
cent which is no longer negligible. For the nozzle wall boundary layers or for
boundary layers measured on wind-tunnel models which have turbulent boundary
layers, the flow probably reaches an equilibrium state involving a balance
between the absorption of acoustic energy radiated by the turbulent flows which
surround the local flow and the acoustic energy radiated by the local flow
itself, that is, a balance between gain and loss as far as acoustic energy is
concerned. This balance probably results in a lower net loss and thus may tend
to obscure (in ground facilities) the true importance of this energy radiation
effect. Only measurements in a "quiet tunnel" (ref. 65) or on a flight vehicle
can clarify the true influence of energy loss via acoustic waves.

There are other problems peculiar to the calculation of compressible turbu-
lent boundary layers such as (1) persistence and importance of wall temperature
history effects, (2) increasing predominance of low Reynolds number amplifica-
tion, and (3) variable edge entropy, but these topics are more conveniently dis-
cussed in connection with the mean field closure methods. It should be noted
that the nondimensional burst period for compressible flows is approximately the
same as that for low-speed flows (ref. 66).

TRADITIONAL PREDICTION METHODS

Methods for calculating turbulent, compressible boundary-layer development
have been a topic of extensive research for many years. Until the advent of the
high-speed computer, most of this research effort was concerned with prediction
methods which could be applied by using only hand calculations or very simple
machine computations. Even now, work is continuing on these easily calculable
methods because of their inherent accuracy (due to extensive empirical valida-
tion) and because of the ease and speed with which these methods can be applied
to engineering problems. Traditional methods can be classified into two general
categories: integral methods and correlation methods. Numerous survey papers
are available (e.g., ref. 18 and pp. 181-229 of ref. 28) which attempt to evalu-
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ate the accuracy and limits of applicability of various traditional methods for
compressible two-dimensional turbulent flows.

The objectives of this section are to describe and discuss the merits of
each category of traditional methods. In addition, several illustrative exam-
ples of each category will be discussed and compared with experimental data.
Comments concerning the accuracy and applicability of these prediction methods
will be made. A discussion of compressibility transformations is first pre-
sented since transformations are frequently used in both correlation methods and
integral methods; next, a discussion of correlation methods including compressi-
ble law-of-the-wall/law-of-the-wake formulations is given; finally, integral
methods are discussed. Integral methods may use a transformation technique
and/or a correlation method in the complete solution procedure.

Transformations

One of the earliest approaches to predicting compressible turbulent flows
was to seek a transformation which, when applied to the governing equations for
compressible flow, yields identically the incompressible equations. This tech-
nique has been used with success for laminar boundary-layer flows which satisfy
certain requirements on the relationship between kinematic viscosity and tempera-
ture. (Reynolds stress terms do not appear in the laminar boundary-layer equa-
tions.) The obvious advantage of this approach for turbulent flows is that, if
successful, the more extensive knowledge of the mechanism of turbulent momentum
transfer for incompressible flows can be used to predict compressible flows.

The transformation concept assumes that the companion incompressible flow result-
ing from the transformation is physically observable; in addition, it is usually
necessary to assume an invariance hypothesis concerning some transformation
scale. Beckwith (ref. 18) points out several examples where the physical con-
cepts of a compressibility transformation are violated because of a lack of cor-
respondence of the transformed incompressible flow. These include the following:
(1) Normal pressure gradients which may be important in high-speed flows do not
exist in incompressible flow and, therefore, are not transformed; (2) dissipa-
tion effects in heating calculations are not properly transformed; (3) large nor-
mal temperature gradients in the transformed incompressible flow result from the
transformation and, according to the equation of state, cannot exist in the
constant-density flow; (4) fluctuating density terms in the compressible formula-
tion have no counterpart in the corresponding constant-density flow.

The earliest transformation for turbulent flow was presented by Dorodnitsyn
(ref. 67) who considered only the Von Kdrmin momentum integral equation. Mager
(ref. 68) was the first to attempt to transform the partial-differential equa-
tions for turbulent boundary-layer flow. Examples of other attempts to define a
transformation in the same time frame were Culick and Hill (ref. 69), Burggraf
(ref. 70), and various reference temperature or enthalpy methods for zero-
pressure-gradient flows (e.g., refs. 71, 72, and 73).

Some years later, Coles (ref. 15), criticizing the assumption made in ref-
erences 68 and 70 of invariant turbulent shear and stream function under the
transformations, proposed a more physically acceptable transformation in which
the adiabatic, compressible, and the constant-density flows are assumed to be
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related by three scaling parameters o0(x), n(x), and ¢(x). The first param-
eter relates the stream functions of the two flows, the second is a multiplica-
tive factor of the Dorodnitsyn-Howarth scaling of the normal coordinate, and the
third relates the streamwise coordinates of the two flows. An additional assump-
tion pertaining to the invariance of a Reynolds number characterizing the law-of-
the-wall region of the boundary layer is necessary to complete the transforma-
tion. This assumption, which Coles called the substructure hypothesis, provides
a substitute for a reference state utilized with many theoretical approaches.
Coles' transformation was then modified or extended as follows: (1) Crocco

(ref. T4) modified Coles' transformation to include effects of heat transfer

and pressure gradient; (2) Baronti and Libby (ref. 75) replaced Coles' substruc-
ture hypothesis with a sublayer hypothesis based on experimental observation;

(3) Jeromin (ref. 76) extended Coles' transformation to include effects of mass
transfer; (4) Lewis, Kubota, and Webb (ref. 77) defined new coordinates consis-
tent with Coles' transformation and eliminated the need for a substructure or
sublayer hypothesis (they found, however, that dissipation effects for compressi-
ble flows invalidate the transformation for high wall temperatures); (5) Economos
and Boccio (ref. 78) empirically modified Coles' law of the wall/law of the

wake and introduced two compatability equations which provide the closure condi-
tions. Coles' approach and the subsequent companion work represent the primary
advances in transformation theory in recent years.

Comparisons with experimental data have shown that transformations yield
good results only for moderate Mach numbers (M £ 6) and for moderate wall heat-
ing (T,/T¢ 2 0.5) with zero or mild pressure gradients (refs. 75, 77, 79, and
80). (In ref. 79, it was observed that while compressibility had little effect
on mixing length for flat-plate-type turbulent boundary layers, Mager's trans-
formation predicts a large effect.) By empirically modifying Coles' transforma-
tion, Economos and Boccio (ref. 78) were able to extend the range of agreement
with experimental data beyond any other method. While this empirical modifica-
tion was not physically appealing (transformation of impermeable wall case
yields mass transfer in transformed plane), agreement with experiment was sub-
stantially improved. This is illustrated in figure 12 where the methods of
Baronti and Libby (ref. 75) and Economos and Boccio are compared with experi-
ment; here, local skin friction values were obtained from experimental velocity
profiles according to each transformation approach (by fitting law-of-the-wall
profiles to experimental profiles) and normalized by a reference value. (See
ref. 80 for details.) This reference value is equivalent to the measured skin
friction as illustrated in figure 12. As the ratio of wall temperature to total
temperature is decreased, a systematic error appears in the skin friction
obtained using Coles' transformation with the sublayer hypothesis as recommended
by Baronti and Libby. The empirical modification of Economos and Boccio appar-
ently eliminates this disagreement.

The ability of Coles' original transformation to predict flat plate skin
friction and heating for Mach 4 to 13 and 0.14 ¢ T,/Ty £ 0.7 1is illustrated in
figure 13. The experimental data are transformed according to Coles' method and
compared with a good incompressible prediction (ref. 81). The prediction of
skin friction is generally poor; this poor agreement results from an effect of
T,/Tt not accounted for in the transformation. (See ref. 82.) The improved
heating prediction in figure 13 reflects the use of a Reynolds analogy factor
(2Ngt/Cg) to adjust the level of the data.
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Both references 77 and 78 applied their versions of Coles' transformation
with an incompressible integral method, and examples of the results are shown in
figure 14. Here, the skin friction and momentum thickness for the waisted body
of revolution from reference 83 are compared with predicted values from each
method. These comparisons properly belong in a later section on integral meth-
ods but are shown here to illustrate the accuracy of these transformation meth-
ods. The agreement of the method of reference 78 (fig. 14(a)) with experiment
is good and rivals some of the more advanced numerical methods, while the predic-
tions of reference 77 (fig. 14(b)) are obviously poor and unacceptable for engi-
neering purposes. (However, curvature and laminarization effects may be present
in some of the data of ref. 83 and thus could influence these comparisons.)

These comparisons of the results from transformation methods with experi-
mental data and other comparisons in the cited references lead to the general
conclusion that while some success for adiabatic flows is evident, transforma-
tion methods are not presently desirable for general applications, a conclusion
also reached in references 18 and 28 (pp. 181-229).

Correlation Methods

Correlation methods are perhaps the most popular of the traditional methods
because they are generally simple to apply and some are quite accurate. Even
though these methods are strictly applicable only for two-dimensional or axisym-
metric flows with zero pressure and wall temperature gradients, they are widely
used for parametric design studies and preliminary estimates. The empirical
input to some of these methods enhances the accuracy and allows easy modifica-
tion of the method to include new empiricism. Some of these methods provide pre-
dictions for wall shear stress only, while others also allow specification of
the boundary-layer profiles. Additional assumptions for the Reynolds analogy
factor 2Ngt/Cs and the recovery factor are required in order to calculate wall
heat transfer for those methods which only predict wall shear.

Spalding and Chi (ref. 81) have presented an excellent summary of available
correlation methods for compressible turbulent flow up to 1964. Since 1964 the
only correlation method to arise is that of White and Christoph (ref. 84).
According to Spalding and Chi, correlation methods may be classified as follows:

(1) Methods using Prandtl or Von Kdrmin differential equations (i.e.,
Prandtl or Von Kdrmdn mixing length concepts)

(2) Theories based upon other differential equations

(3) Theories based upon a fixed velocity profile

(4) Theories based upon incompressible formulae with reference properties

In categories 1 and 2 the shear stress is assumed to be constant through
the boundary layer and equal to its wall value; in category 3 the velocity pro-
file is assumed indpendent of compressibility; in category U4 the incompressible
relations are assumed to apply for compressible flows if the gas properties are

evaluated at a reference temperature or enthalpy where the reference temperature
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is a function of Mach number, ratio of wall to edge temperature, and recovery
factor. Some examples of the more popular methods in each category are as
follows:

Category 1 - Van Driest I (ref. 13) and Kutateladze and Leont'ev (ref. 85),
which use a Prandtl mixing length, and Wilson (ref. 86), Van Driest II (ref. 87),
Harkness (ref. 88), Deissler and Loeffler (ref. 39), and Moore (ref. 89), which
use a Von Karman mixing length.

Category 2 - Li and Nagamatsu (ref. 90) and Kosterin and Kashmarov
(ref. 91).

Category 3 - Cope (ref. 92) and Monaghan (ref. 93).
Category 4 - Summer and Short (ref. 73) and Eckert (ref. 72).

In addition to these methods, Spalding and Chi (ref. 81) present a method which
uses a Van Driest type analysis to determine a function F, and empirical data
to determine a function Fg. In their method the assumption is made that F,C¢
varies uniquely with FRR according to an incompressible law (R is a Reynolds
number) and that Fo. and FRr are functions only of Mach number, ratio of wall
temperature to edge temperature, and recovery factor.

Numerous survey papers (refs. 16, 80 to 82, 84, and 94 to 98) have
attempted to determine which' of the correlation techniques best predicts avail-
able experimental data for compressible turbulent boundary-layer flow. The
method which is found to be the "best" in each of these survey papers is usually
either Van Driest II (ref. 87), Spalding and Chi (ref. 81), or a reference tem-
perature approach (e.g., Eckert, ref. 72). The choice of a "best" method is
influenced in each of the survey papers by particular selections of virtual ori-
gin, Reynolds analogy factor for heating calculations, and recovery factor.

(See ref. 82.)

Comparisons of experimental skin friction and heat transfer data with pre-
dicted values obtained from the methods of Van Driest (ref. 87), Spalding and
Chi (ref. 81), and Eckert (ref. 72) for Mach numbers 4 to 10 and ratios of wall
temperature to total temperature from 0.14 to 0.7 are shown in figures 15 to 17.
The data were obtained in wind tunnels on flat-plate models with dp/dx = 0 and
dT,,/dx = 0; skin friction was measured with balances and wall heating was mea-
sured by transient techniques. The comparisons are presented in the form F,C¢
against Fy Rg or Fp Ry yo where F,Cy is equivalent to the incompressible
value of sk?n friction®and Fr RG or Fg Rx,vo is equivalent to the correspond-
ing incompressible value of Reynolds number. (See ref. 82 for further explana-
tion.) 1In this manner, all the transformed experimental data can be compared
directly with values from a good incompressible skin friction law (law from
ref. 81 used herein) to judge the efficacy of each method.

The comparison of the data with predicted values from the Van Driest II
method (ref. 87) is shown in figure 15. For this comparison, a momentum thick-
ness Reynolds number is used, and a Reynolds analogy factor of 1.0 is assumed,
as recommended for best results with the Van Driest II method by Hopkins and
Inouye in reference 98. The comparison is favorable for heat transfer, but the
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transformed skin friction data fall generally below the prediction. As reported
in reference 82, the prediction error also appears to be a function of T, /T¢.

A similar comparison for the method of Spalding and Chi (ref. 81) is shown in
figure 16. Here, the virtual origin location was assumed to be near the end of
boundary-layer transition, and Von Kdrman's Reynolds analogy factor (used as sug-
gested in the appendix of ref. 95) was applied as recommended for the Spalding
and Chi method in reference 82. The prediction of both the heating and skin
friction data in figure 16 is quite good. The results from Eckert's method

(ref. 71) are shown in figure 17 using the same virtual origin and Reynolds anal-
ogy factor as previously used with the Spalding and Chi method. The comparison
between data and prediction is again very good in figure 17, but there appears

to be a discernible variation of prediction errors with Ty /Ty. (See ref. 82.)
Considering the wide range of flow conditions of the data, each of the three
approaches provides a credible prediction method for zero-pressure-gradient
turbulent-boundary-layer flows.

Comparisons of predictions from Eckert's method (ref. 72) with data from
flight are shown in figures 18 and 19. Data obtained on conventional aircraft
such as the A-5A, the Mirage IV, and the XB-70-1 (refs. 99 to 101) are shown in
figure 18. The agreement with Eckert's method is good in each case. Heating
data from sharp and blunt cones in flight are shown in figure 19 (from ref. 96)
where Colburn's Reynolds analogy (ref. 102) was used for the calculation and the
virtual origin was assumed to occur at the stagnation point or cone tip. A
cone/flat plate transformation after Van Driest (ref. 103) was applied. The
agreement between prediction and data is surprisingly good over the wide range of
data included (3 £ M g 13, 0.2 g T,/Te £ 2.3). It appears therefore that these
correlation methods provide accurate predictions of turbulent skin frietion and
heat transfer for a wide range of flow conditions (for dp/dx =~ 0, dT,/dx = 0)
in flight as well as in wind tunnels.

Compressible law of the wall.- The law-of-the-wall velocity profile has
been useful in arriving at quantitative analytical results for incompressible
flows. This incompressible law is empirical in nature but can be derived
directly from mixing length concepts; that is,

T = 512(3_ﬁ>2
oy

and

1 = Ky (Prandtl)
SO

- mr2v2/dT)\2
T = PpKey (-) (20)
dy

Integration yields (p = Constant and T = Ty, = Constant)
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=ut=linyts+cC (21)
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Pw
which is the incompressible law of the wall and is valid only very near the wall

but not in the viscous sublayer. Coles (ref. 104) extended equation (21) to
include the wake portion of the boundary layer, and the resulting equation is

wt=zllnyt +c+Ty (22)
K K

where (7w/K)w is a wake function which accounts for the wake-like behavior of
the outer portion of the turbulent boundary layer. Alternately, by evaluating
equation (22) at the edge of the boundary layer and subtracting the resulting

equation from equation (22), the velocity defect equation is obtained

==11nY +T(2 - w) (23)
ur K 8 K

An expression for the incompressible profile from the wall to the outer
edge of the buffer layer (beginning of fully turbulent region) was presented by
Spalding (ref. 105) and Kleinstein (ref. 106). Modifications to the law of the
wall for surface roughness (e.g., ref. 107) and wall injection (e.g., ref. 108)
are available. Equation (23), the velocity defect distribution, is independent
of surface roughness. The law-of-the-wall/law-of-the-wake expressions have been
used extensively and with great success in studies of turbulent boundary layers
either to obtain such parameters as C¢ and § from experimental velocity pro-
files or as an auxiliary equation in integral or numerical prediction methods.

The successful application of the law-of-the-wall/law-of-the-wake velocity
profile for incompressible flows has naturally led to numerous attempts to apply
similar concepts to compressible flows. A brief description of some of the more
prominent of these studies follows.

Van Driest (ref. 13) in 1951 derived a compressible law of the wall for
zero-pressure-gradient flows by solving the turbulent-boundary-layer equations
with Prandtl's mixing length formulation and a laminar and turbulent Prandtl num-
ber of unity. By comparing the resulting law of the wall from Van Driest's anal-
ysis with the incompressible law of the wall, it is clear that the effects of
compressibiliy can be accounted for by defining a generalized velocity u¥*® in
place of u. (See Maise and McDonald (ref. 79).) This generalized velocity is
defined as

a* =, 1 sinc |:2A§(ﬁ/um)1;2B:] ) f<2_>1/2 i
(BS + A2) Pw

where o is from Crocco's relation and

22 = [y - 1)/2]M 2
Tw/T,
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B=1+ [(Y - 1)/2]Mm2 -1

More recently Maise and McDonald (ref. 79) applied these concepts by assum-
ing that Coles' law of the wall was valid for compressible flow if the veloci-
ties are defined as the generalized velocity. The resulting equation for the
velocity defect was

ug - u* o 190 Y 4 c(2 - w)

Ut K 8

where w 1is Coles' tabulated wake function (ref. 104). Using Clauser's results

(ref. 1) for incompressible flow to define the constants, the final expression
is

#*
Up = U* - 2510 Y + 1.25(2 - w) (21)
Ur 6

Maise and McDonald found that experimental velocity profiles for adiabatic, com-
pressible turbulent boundary layers from Mach 1.5 to 5 through a wide range of
Reynolds numbers were well correlated by equation (24). However, the velocity
profiles for nonadiabatic flows in the same range of Mach number were poorly
correlated.

Fernholz (ref. 109) used a similar analysis with generalized velocities but
did not use Clauser's constants. Instead, experimental data were used to corre-
late the constant as a function of the ratio of wall temperature to adiabatic
wall temperature and Reynolds number. The formulation was

u* - 114 39T 4 Fy (25)
ur K Vu

where

Fq = f Taw - Tw’ peuee>
Taw Hy

Fernholz also included the velocity defect law but redefined the §-coordinate
as was done for incompressible flows. The resulting equation was

*

Upy-u* o fan ¥ - R (26)
ug A*

1 * .
A* = § Ye - U 4
0 Ur

M =47 and N = 6.8 for adiabatic walls. Equation (25) provided a good corre-
lation of experimental velocity profiles for Mach 5 to 8 with moderate heat
transfer. Equation (26) also correlated the defect region of these profiles

for Rg = peugb/u, greater than 1000 to 1500.

where

Ol
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Mathews, Childs, and Paynter (ref. 110) using generalized velocity concepts
fitted the velocity defect equation (eq. (24)) to experimental velocity profiles
(by the method of least squares) and thereby obtained the skin friction and
boundary-layer thickness which allowed the best profile fit. The test cases
involved both normal and conical shock interactions with turbulent adiabatic
boundary layers at supersonic speeds as well as a flat-plate supersonic flow.
The velocity profile fits were good, and the resulting skin friction and
boundary-layer thickness values compared favorably with experiment and other
predictions.

Sun and Childs (ref. 111) modified the analysis of reference 110 by using a
more realistic shear stress distribution through the boundary layer. Instead of
assuming T o T, = Constant, the expression

i_w -1 - <%>b (27)

was used. Equation (27) with b = 1 1is a reasonable fit to experimental data
for both subsonic and supersonic flows (ref. 25). This modification satisfies
the physical condition that the velocity gradient be zero at y = § and pro-
vides more accurate values of boundary-layer thickness. The profile fit and the
resulting skin friction were little changed from the analysis of reference 109.

Kane (refs. 112 and 113) used the compressible counterpart of equation (1)
which is

utt - % ln y* + C (28)
where
u+
utt =/ <p/p )1/2 du* (29)
0 /Ty

Equation (29) was evaluated by using the Crocco temperature profile and Squire's
definition of T/T,; (ref. 114) which includes the effects of wall injection.
Inclusion of an empirical extension of Kleinstein's buffer layer profile

(ref. 106) to compressible flow as well as Coles' wake parameter completed the
formulation of the compressible law of the wall/law of the wake. Kane finds
that three profile functions remain undefined in his compressible law of the
wall/law of the wake which must be obtained from a fit of experimental velocity
profile data. A multiple regression analysis is then used to define the best
functional variation of these three functions with appropriate fluid variables.

Squire (ref. 114) used an approach similar to Kane's method to extend the
compressible law of the wall to flows with wall injection. By fitting experimen-
tal velocity profile data, the integration constant in the law of the wall was
determined as a function of v, /ur and Mach number. The slope of the log
region K was found to be independent of mass injection. Chen (ref. 115)
extended the generalized velocity concepts used by Maise and McDonald (ref. T79)
to flows with rough wall, heat transfer, and pressure gradient. White and
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Christoph (ref. 116) included effects of longitudinal pressure gradient on the
shear stress distribution and then, using a method similar to Squire (ref. 114)
with vy, = 0, obtained a closed form solution for the law-of-the-wall veloeity
profile.

Danberg (ref. 115) used Coles' law-of-the-wall/law-of-the-wake profile and
a reduced velocity

a' = (p_>1/2 du
Ow

to account for compressibility effects. Four profile parameters were determined
from least square fits of Danberg's compressible law of the wall to experimental
veloecity profile data from Mach 2 to 6 for adiabatic wall conditions. Danberg
attempted a similar definition of a law of the wall for the temperature profile,
but a paucity of experimental data prevented definitive results.

This discussion of the status and development of a compressible law of the
wall indicates that reliable expressions for a compressible law of the wall
exist for adiabatic wall conditions and Mach numbers less than 6. However, for
flows with significant heat transfer, the definition of a compressible law of
the wall is still unclear. The unresolved question of the effect of heat trans-
fer on the applicability of a compressible law of the wall is clearly illus-
trated when the results of Maise and McDonald (ref. 79), which show poor corre-
lation of compressible velocity profiles with heat transfer, are compared with
the results of Gran, Lewis, and Kubota (ref. 118) which show good correlation of
compressible velocity profiles with pressure gradient and heat transfer, both
studies using nearly the same compressible law-of-the-wall formulation; the dif-
ference between the two formulations was that A* (see eq. (26)) was used
instead of & in the velocity defect law in reference 117. It thus appears
that further progress in defining a general law-of-the-wall velocity profile for
compressible turbulent boundary layers will be paced by progress in obtaining
detailed and accurate experimental data through a wide range of flow variables.

Integral Methods

All integral methods solve the (Von Karmdn) integral momentum equation
along with various auxiliary relations. The two-dimensional Von Karmidn momentum
integral equation is obtained by integrating the x-momentum equation. When nor-
mal stress terms are neglected, the following equation is obtained:

@+.e_d&3H+2+.u_edpe+ 1 g_peﬁ-fpdy =E§ (30)
dx ug dx Pe dug peue2 dx 0 2

where

8
o = pu 1-u__ dy
0 Pele Ue
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If p is independent of y and the free-stream flow is adiabatic, then

E _dp_e = "Me2
Pe dug

and equation (30) becomes

Cr

a0 4 6 ey . 2 - M2) -
dx Ug dx

There are two basic types of integral methods - those which solve the equa-
tions in the physical plane and those which use a compressibility transformation
and then solve the equations in the incompressible plane. Most of the earlier
methods used a compressibility transformation, while more recent methods favor
solving the equations in the physical plane. Examples of auxiliary relations
used in the numerous methods available in the literature are as follows:

(1) Moments of the integral momentum equation, which are obtained by multi-
plying the momentum equation by y or u and integrating across the
boundary layer (these moment equations contain unknowns involving tur-
bulent shear stress or dissipation integrals which must be defined in
terms of known quantities)

(2) Entrainment equation and/or lag equation
(3) Specification of velocity, temperature, and/or shear stress profiles

(4) Specification of form factor, wall shear, and/or wall heating (Reynolds
analogy)

By using selected auxiliary relations, the problem is reduced to solving a set
of quasilinear, coupled ordinary differential equations by an available solution
technique.

Integral methods have advantages which have assured their continued use
through the years. Primary advantages are the following: (1) Solution proce-
dures are fast and easily programed; (2) starting procedure is simple; (3) less
detailed information on turbulence is necessary; (U4) integration process eases
restriction on accuracy of profile shapes. The disadvantages of such methods
are that considerable empiricism is necessary to close the equation set (i.e.,
relying upon empirical input restricts accuracy and range of application) and
that nonequilibrium effects are difficult to include. The latter restriction
becomes particularly important for high Mach number flows. Of course, if a com-
pressiblity transformation is used, the integral method is subject to all the
uncertainties inherent in the transformation.
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Most earlier integral methods utilized a compressibility transformation in
the solution procedure. Examples of these are the methods Reshotko and Tucker
(ref. 119), Englert (ref. 120), Mager (ref. 68), Culick and Hill (ref. 69), and
Spence (ref. 121). More contemporary methods using transformations are those of
Sasman and Cresci (ref. 122), Camarata and McDonald (ref. 123), Flaherty
(ref. 124), Zwarts (ref. 125), and Kiuster (ref. 30, pp. 19-1 - 19-11); exten-
sions of Head's entrainment method (ref. 126) to compressible flows by transfor-
mations were given by Standen (ref. 127), So (ref. 128), and Green (ref. 129).

In recent years, integral methods which do not use a compressiblity trans-
formation but rather use auxiliary relations which are valid in the compressible
plane have found considerable favor. A representative list of such methods
includes those of Miller (ref. 130), Michel, Quémard, and Cousteix (ref. 131),
Johnson and Boney (ref. 132), Pinckney (ref. 133), Reeves (ref. 30, pp. 6-1 -
6-A2-2), and White and Christoph (ref. 84). 1In addition, Green (refs. 129 and
134) and Green, Weeks, and Brooman (ref. 135) extended Head's entrainment method
(ref. 126) to compressible flows also using physical variables. Obviously, dis-
cussion of all these methods is not feasible in the present paper; therefore, a
representative example of each type of method is discussed. The particular meth-
ods chosen were a method using a transformation (Flaherty, ref. 124), a method
using entrainment concepts in physical variables (Green, Weeks, and Brooman,
ref. 135), a method specially configured for adverse gradients (generated by con-
cave surfaces) also in physical variables (Pinckney, ref. 133), and a method in
physical variables but using a compressibility transformation for a portion of
the solution (Reeves, ref. 30, pp. 6-1 - 6-A2-2). The structural highlights of
each of these four calculation procedures will be discussed along with compari-
sons with typical experimental data.

Method of Flaherty.- This method (ref. 124) is basically a modification of
the procedure of Reshotko and Tucker (ref. 119) and solves the momentum integral
and moment-of-momentum equations in the transformed plane defined by using
Stewartson's transformation (ref. 136). The skin friction coefficient is
obtained from the Ludwieg and Tillman incompressible equation (ref. 137) using
reference temperature concepts (ref. 72). An empirical expression is used by
Flaherty for the shear stress integral through the boundary layer and is the
main improvement over the earlier Reshotko and Tucker method which used a con-
stant shear stress. A provision for calculating wall heat transfer based upon
the energy deficit in the boundary layer is also included.

Comparisons of predictions from Flaherty's method with two sets of experi-
mental data are shown in figure 20. These example data were chosen to illus-
trate the ability of the method to predict boundary-layer growth along flat or
curved surfaces with favorable pressure gradient. Good prediction of the
boundary-layer thickness data from reference 138 at Mach 1.5 (fig. 20(a)) is
achieved over the entire length of the test plate. Reasonable agreement with
the data from reference 83 at Mach 2 (fig. 20(b)) on the waisted body of revolu-
tion is also obtained, but the agreement of prediction with both momentum thick-
ness and skin friction data deteriorates in the region of adverse pressure
gradient (x/L > 0.7). Comparisons of this method with other available data
in references 30 (pp. 181-229) and 124 indicate generally good predictions of
boundary-layer integral properties up to Mach 6 with moderately cooled walls and
moderate pressure gradient.
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Method of Green, Weeks, and Brooman.- This integral method (ref. 135) is
essentially an extension of Head's method (ref. 126) to compressible flow and
attempts to account for the influence of upstream flow history on the turbulent
stresses. The procedure consists of solving in the physical plane the integral
momentum equation, the entrainment equation, and a rate equation for the entrain-
ment coefficient. This rate equation or lag equation is developed from an equa-
tion for shear stress derived from the turbulent kinetic energy equation. In
addition, an empirical factor is introduced to account for the variation of inte-
gral parameters with Mach number in equilibrium flows. The method as formulated
is restricted to adiabatic flows.

Two comparisons of predictions from this method with experimental data are
shown in figure 21. The first is a comparison with the data of reference 83
(fig. 21(a)). The prediction is in good agreement with the experimental surface
shear and momentum thickness, even at the rear (adverse pressure gradient) of
the waisted body. Good agreement is also obtained with the data of Lewis,

Gran, and Kubota (ref. 139), as shown in figure 21(b). Here the pressure gradi-
ent is zero up to x = 35.6 cm, adverse from x = 35.6 cm to 45.7 cm, and then
favorable thereafter. The good agreement seen in figure 21 is also evident in
other comparisons shown in reference 135 for adiabatic conditions up to Mach 4.

Method of Pinckney.- This method (ref. 133) was especially tailored to pre-
diet turbulent boundary-layer development on compression (concave) surfaces com-
mon to hypersonic air breathing engines. The set of equations which is solved
consists of the momentum integral equation, the moment-of-momentum equation, and
the integral energy equation. Auxiliary relations consist of (1) assuming a
Crocco-like temperature profile which satisfies the total energy deficit across
the boundary layer as determined from the net heating along the surface (history
effect), (2) assuming an empirical shear stress distribution across the boundary
layer, and (3) assuming the Spalding and Chi (ref. 81) skin friction prediction
(suitably shifted) is valid in pressure gradient flows (as well as the resulting
heat transfer coefficient obtained from Spalding and Chi skin friction with Von
Kdrmdn's Reynolds analogy factor (ref. 140)). Provisions are made to allow cal-
culations to proceed through transition and into fully turbulent boundary-layer
flow.

Comparisons of Pinckney's method with experimental data from reference 141
are shown in figure 22. These integral boundary-layer-thickness data were
obtained on an axisymmetric compression surface for both Mach 5 adiabatic flow
and Mach 8 cold-wall conditions. Predictions from the integral method are gener-
ally in good agreement with the integral thicknesses for both experimental condi-
tions shown. Comparisons with other data in reference 133 are also favorable
and confirm reasonable accuracy for this prediction method at least up to Mach 8
with moderate wall cooling.

Method of Reeves.- This method (ref. 30, pp. 6-1 - 6-A2-2) solves the com-
pressible turbulent boundary-layer equations including mass transfer by assuming
a two-layer boundary-layer model. Mixing length concepts are assumed to apply
in the inner layer, and this results in a compressible law-of-the-wall expres-
sion; this expression is inserted into the boundary-layer conservation equations
which are integrated away from the wall to a matching location. The outer (or
wake) layer solution uses an integral momentum method, the results from which
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are matched to the inner layer solution at a prescribed match point. The outer
layer integral solution employs a compressibility transformation. An empirical
expression for the shear stress integral for the outer layer is specified.
Apparently the dynamics of the boundary-layer solutions from this method depend
on coupling and interaction between the inner and outer solutions.

Two comparisons of predictions from Reeves' method with experimental data

are shown in figure 23. The predictions of the integral thicknesses for the

data of reference 138 (fig. 23(a)) at Mach 1.5 are excellent. While the predic-
tion of momentum thickness for the data of reference 83 (fig. 23(b)) at Mach 2.4
is good, the skin friction data are not well predicted. Reeves found good agree-
ment between his predictions and experimental data up to Mach 10 for a wide

range of wall temperature ratios with and without wall mass transfer. Some com-
putational stability problems occurred for negative pressure gradients. The
method was computationally quite rapid.

In summary, this brief review of various available integral solution proce-
dures for two-dimensional compressible turbulent boundary-layer flow indicates
that reasonably accurate predictions are possible using integral techniques for
a wide range of flow conditions. Caution must be exercised in applying integral
methods to flows with severe pressure gradients as well as other nonequilibrium
effects and to flows where the empirical correlations used in the method do not
apply. While integral methods provide fast and inexpensive calculations neces-
sary for design and analysis of fluid systems, the limitations of any method
must be clearly understood to prevent erroneous conclusions. As discussed ear-
lier, transformation theory has not, thus far, developed into a tool for general
application, and therefore, integral methods using a "complete" compressibility
transformation should probably be avoided at present.

NUMERICAL SOLUTION PROCEDURES

This section considers the various alternative numerical procedures cur-
rently being used to solve the nonlinear partial-differential equations desecrib-
ing compressible turbulent boundary layers (which are parabolic in the marching
or longitudinal direction). There are several numerical difficulties peculiar
to the calculation of turbulent (as opposed to laminar) compressible boundary
layers. These problem areas include (1) presence of a thin sublayer, which
requires either a separate wall treatment or variable grid (or coordinate trans-
formation), (2) rapid growth of the boundary layer with longitudinal distance,
which requires a transformation or streamline mapping procedure, and (3) alge-
braic terms in the turbulence modeling expression which can alter the stability
of the numerical calculation procedure.

Solution Techniques

The numerical solution procedures used to solve the compressible turbulent
boundary-layer problem can be conveniently categorized in the following manner:
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Conventional Finite-Difference Methods
Implicit (refs. 45 (pp. 375-383), 53, and 142 to 157)
Explicit (ref. 158)

Finite-Difference Variants
Shooting method (refs. 28 (pp. 551-554), 40, 159, and 160)
Box method (ref. 161)
Micro-integral (ref. 9)

Methods Employing Analytical Functions
Wortman approach (ref. 162)
BLIMP (ref. 163)
Method of weighted residuals or method of integral relations (refs. 164
and 165)
Finite element (ref. 166)

Method of Characteristics (ref. 36)

The conventional finite-difference methods have been the most popular.
They usually employ Crank-Nicolson differencing and the Thomas algorithm for
inversion of the coefficient matrix. The advantages of these procedures include
ease of coding, numerical stability, and overall simplicity. Their disadvan-
tages are mainly due to their essentially "brute force" approach, in that
100 nodes in the vertical direction are usually needed to adequately represent
a turbulent profile (even with nonuniform mesh spacing). Therefore, the proce-
dures generally require relatively large storage and long machine time, espe-
cially when chemical reaction effects are included.

The shooting procedure uses finite differences in the longitudinal or
x-direction but solves an ordinary differential equation (two-point boundary-
value problem) in the transverse or y-direction. Several users of this approach
have encountered serious stability problems, especially with wall heating or
cooling and pressure gradient cases. The sclutions seem to be sensitive to
guesses of the inner boundary conditions. Only a few codes presently use the
shooting method, and it is probably not one of the best procedures available.

The box method is quite efficient for boundary layers and is of more recent
vintage than the conventional finite-difference and shooting procedures. By a
change of dependent variables the equations are reduced to a first-order nonlin-
ear system, which is solved by Newton iteration and two-point differencing.

This procedure has several advantages, which include high order spatial accu-
racy, even with a rapidly varying nonuniform grid, and the small number of nodes
required for solution (obtained by Richardson extrapolation). As a result of
these advantages, this procedure produces solutions in 7 times less machine time
and with much less storage than conventional finite-difference methods.

In the micro-integral method, developed at Imperial College of Science and
Technology, the boundary-layer growth is accounted for by use of a stream func-
tion as a transverse variable, thus reducing the number of nodes required. Most
versions of this procedure alsoc use a Couette flow analysis near the wall, which
significantly reduces the required calculation time, as the use of small nodal
spacing near the wall to resolve the sublayer is no longer necessary. Also, in
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this method the convective terms are integrated between grid nodes before differ-
entiation. This solution procedure is one of the more efficient ones available,
but the Couette flow analysis near the wall must change with different boundary
conditions, and, since the usual formula for grid control (stream-function bound-
ary condition) is explicit, there may be problems for large longitudinal
increments.

The Wortman approach is fairly recent and bears some faint resemblence to
the shooting method in that finite differences are taken in the longitudinal
direction only. An integrating factor is used to reduce the order of the equa-
tions and the procedure is referred to as an iterative operator method. The
method appears to be quite fast and has a high order of spatial accuracy.

BLIMP (boundary-~layer integral matrix procedure) has undergone extensive
development, especially for application to flow chemistry problems. The proce-
dure is fairly involved, and the method was specifically developed to minimize
the number of grid nodes (especially important for the large equation set which
results when chemical effects are included). The method is characterized by
finite differences in the longitudinal direction, and strip integrals in the
transverse direction with cubic spline fits and Newton-Raphson iteration.

The method of weighted residuals (or method of integral relations) is some-
what similar to strip integral procedures. The method uses weighting and approx-
imating functions which must be assumed. The advantage to the procedure is
again the small number of nodes involved, but the coding is fairly complex and
considerable insight is often needed to select reasonable functional forms. For
turbulent flows the computation time can be of the same order as for the conven-
tional finite difference and the method (and the several variants thereof;
including finite element which is a global as well as a local method of weighted
residuals) has not been very popular.

In the method of characteristics a solution is obtained in the outer region
of the boundary layer only and matched to a law of the wall. For this procedure
the viscous terms in the boundary-layer equations must be neglected.

Systems of Independent Variables

The simplest set of independent variables to use would be the actual nondi-
mensional physical quantities x,y (ref. 167). An advantage of this variable
system, when compared with the more usual transformations, is the decreased
labor involved when changes are made in the physical specification of the prob-
lem (i.e., one does not have to keep untransforming and retransforming for quan-
tities or boundary conditions which are specified functions of physical vari-
ables). Therefore, these variables are particularly useful for inclusion of
alternate turbulence models and to determine the influence of a specified varia-
tion of pressure in the transverse direction. However, this system of variables
does not account for boundary-layer growth with longitudinal distance without
periodic nodal point redistribution and is therefore seldom used in production
codes which are expected to apply over changes in Reynolds number of several
orders of magnitude.
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One method of solving this boundary-layer growth problem is to use a normal-
izing factor on y which is a function of x, such as §, &%, ete. This will
keep the boundary layer within the computational grid, but longitudinal deriva-
tives of the normalizing factors are required; if d&%* is used, this quantity
can become negative for cold walls.

More generally, solutions are obtained using some variant of the Levy-Lees
transformation (e.g., ref. 11)

£ « fpeue dx (31)

nalﬁfpdy (32)
£

originally developed for laminar boundary layers. These variables reduce the
boundary-layer growth and the influence of variable density in the computational
domain. As a rule of thumb, n = 0.5 for laminar flows and A =~ 0.8 for tur-
bulent flows. However, in general n = f(x) and the boundary layer may still
grow out of (or into) the mesh (i.e., ng # Constant for turbulent flows with-
out solving for n(x)).

Another alternate set of independent variables involves the use of a stream
function Y as the normal or .transverse coordinates (ref. 9). This approach
automatically tracks the boundary-layer growth, but the boundary conditions must
be specified or determined. One could also use the Crocco or velocity variables
(ref. 168) where the normal coordinate is a function of u/ug. This allows an
accurate solution with a nearly constant Au/u, step size, which corresponds to
a highly nonuniform Ay; that is, the number of necessary nodes is very effec-
tively minimized. However, this variable set is not suitable for cases where
u/ug > 1 (as transformation involves /1 - (u/ug)), and therefore, wall jet
flows would be difficult to compute with the code.

Two examples are given here of the possible problems and inaccuracies which
can be encountered in numerical solutions. Figure 24 (taken from ref. 169) indi-
cates the error in Cy associated with a change in nodal point spacing. The
usual assumption made in numerical analysis is that the solution becomes more
accurate as the integration interval is reduced. However, as the figure shows,
for single-precision IBM machines with approximately 7 decimal place accuracy,
decreasing the step size can actually increase the discrepancy between a theo-
retical and numerical solution (as a result of roundoff error). When double-
precision arithmetic is used (approximately 15 decimal place accuracy), the
expected trend is obtained. The other example is given in figure 25 (from
ref. 170). Here K = Anp,1/8n,  and is the conventional means of including var-
iable nodal spacing in a finite-difference procedure (e.g., ref. 53). These
results from reference 170 show that, for K # 1.0, there is some error involved
in using variable grid spacing (at least as used in ref. 170) and that this
error can become appreciable for K ~ 1.05 (usual values of K wused in solu-
tion procedures are 1.02 to 1.04). These examples are only given to indicate
that certain simple accuracy checks should be made on any numerical code before
the numbers can be fully believed.
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MEAN FIELD CLOSURE

This is probably the most widely used recent closure approach for computing
compressible turbulent boundary layers. In this procedure the Reynolds stress
(p u'v') is related directly to the mean velocity and density fields. This
assumption is nearly exact for equilibrium and near equilibrium boundary layers
where turbulence production is approximately equal to turbulence dissipation
(e.g., pp. 275-299 of ref. 45). That is,

TVt O « e3/2 (33)
oy 1

Using the Prandtl model (ref. U5, pp. 275-299)

W (@ 2 (34)
y

Solving equation (34) for e and inserting this into equation (33), one obtains

u'y!? au C._Lﬂllllé__ (35)
3y  1%(ausay)3
or
TV o« 12(@@)2 (36)
o9y

which is the usual mixing-length model; that is, u'v' 1is a function of mean
velocity profile. The popularity of the mean field closure procedures is due

to several reasons: (1) Many compressible turbulent-boundary-layer flows are
either equilibrium or near equilibrium; (2) a wide range of boundary conditions
can be easily and accurately incorporated (p(x), vu,(x), variable edge entropy,
transition, roughness, etec.); (3) the higher order mean turbulence field models
usually use a mean field model in the near-wall region (e.g., refs. 171 and
172); (4) less computer time and storage are required, compared with mean turbu-
lence field methods; (5) except for highly nonequilibrium flows, mean field meth-
ods yield almost the same answers as mean turbulence field methods. (For exam-
ple, see refs. 8, 24, and 173.)

Details of the mean field closure can be conveniently discussed using
sketch (a) where the boundary layer is shown subdivided into the usual three
regions. The sublayer is the region nearest the wall. The no-slip and usual
impervious wall boundary conditions ("wall discipline") require a wall damping
expression as a modifier to whatever turbulence model is used in the other two
regions. In the law-of-the-wall or fully turbulent region of the boundary
layer, the turbulent motions are scaled as a function of y and experience indi-
cates that the mixing length model is almost universally valid. The outer or
wake region can be strongly influenced by "history" or relaxation effects and
here the turbulent motions are scaled as a function of 6.
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Sketch (a)

Starting in the law-of-the-wall region, the most commonly used mean field
closure model is the mixing length

au

ou (37)
ay

oy

-u'v' = 12

For 1 «y (law-of-the-wall region)

du|ad (38)
ay

-u'v' = K2y2 au
Iy

where K is the Prandtl or Von Kirmdn constant, which is approximately equal to
0.4,

In the outer, or wake region, there are two expressions commonly used, a
mixing length expression

AV = 62(l>2 du|oq (39)
8 /max (9Y |9y
and an eddy viscosity expression (ref. 1)
* —
-0V = augdy 38 (40)
\eJ 9y

o]
*
where, from computational experience (ref. 28), Gi must be used instead of &%
for the compressible case.

For the sublayer, or wall damping region, several expressions are available
(e.g., refs. 34, 40, 174, and 175), but results in reference 169 indicate that,
at least for some cases, most of these expressions yield very similar results.
The most commonly used wall damping expression was developed by Van Driest
(ref. 174) and is an exponential damping upon the mixing length 1(1 - e-V/A)
where

Bur . p+ (A* = 26 for dp/dx and vy = 0) (41)
v
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Therefore, in the wall region the mixing length model becomes

a3a

u'v' = (Ky)2(1 - e'y/A)2
dy

ou (42)
y

In addition to modeling the Reynolds stress term in equation (2), solutions
of the compressible turbulent boundary-layer problem also require a model for
the Reynolds heating term (eq. (4)). This is generally handled through use of a
turbulent conductivity expression

T = Ky % (43)

which then allows the definition of a turbulent Prandtl number

Ky = & (44)
Npp,t

Once Npp ¢ is known, the model for -u'v' can be used in equation (44) to
determine K.

Therefore, in the usual mean field closure models, there are four closure
"constants" which must be determined or specified before a solution can be
obtained: A%+ for the wall damping region, K for the law-of-the-wall region,
(1/8)pax or o for the wake or outer region, and Np. . These constants will
now be examined in some detail, with particular emphasis upon their possible
variation due to (1) compressibility, (2) low Reynolds number, (3) wall blowing,
(4) pressure gradient, and (5) roughness.

Wall Damping Constant

This is the most variable of the four "constants." Available data,
although not definitive, show no discernible effect of Mach number upon At
(e.g., refs. 176 and 177). However, when A is computed from A* for compres-
sible flow (A = A*v/\/t/p), Vv, T, and p can be evaluated at several places
(at the wall, locally as a function of 1y, and at the edge of the sublayer).
Computational experience indicates evaluation at the wall is slightly better
(refs. 53, 176, 177, and 178).

There is no discernible influence of low Reynolds number upon A%, or at
least none has yet been identified (e.g., ref. 179). The influence of wall blow-
ing upon A*, however, is quite large, and there exist several ways of account-
ing for this effect. One of the first procedures was a simple correlation plot
of A* and the wall injection similarity parameter 2F/C¢ (ref. 53). The data
for this plot (fig. 26) were obtained from an examination of low-speed blowing
data. By analogy to the F = O case, the A*-value was taken as the y*-location
where the data were faired into a typical law-of-the-wall variation (i.e., the
outer edge of the sublayer-buffer region). This variation (fig. 26) worked
quite well (ref. 53), and most of the other models tend to give similar results
(ref. 180). The changes in A* with wall mass transfer are quite large and
some modification to A% must be included in order to obtain a reasonable Cg
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prediction. Probably the most general method of adjustin% A* for blowing is
given by Launder (ref. 171), who suggests A% = 26/(T/Tw) T (i.e., since
/Ty = £(y), A*Y = f(y)).

The variation of A* with pressure gradient is also quite large. Cebeci
and Smith (ref. 12) give a correction procedure, as does Kays (ref. 181). (See
also ref. 19.) Again, probably the simplest approach is to use the Launder
expression A* = 26/('E/Tw)1'7 which accounts quite well for the effects of both
mass injection and pressure gradient. The basic problem with the variation of
A+ with blowing and pressure gradient is indicated in sketch (b). As shown in

ou

dp
SLOPE (dt/dy} ==t ]
/ / Y W dX + pWVW<a y>w

Sketch (b)

the sketch, the wall damping occurs in a region where T # Constant, and the
various approaches involve either letting A* o £(9t/3y) (ref. 179) or using
the local 1t(y) to correct the A* or T, value; that is (from ref. 171, for
example),

A = 26 (45
(/TP )

Another parameter which has a large effect upon A% is roughness.
McDonald and Fish (ref. 182) give a correction term for roughness as follows:

Wall damping with roughness o (Wall damping without roughness)

w1 X+ exp(—_Z-_m) (46)
30(y* + 1) k+
where
K+ = KUt
v
y* =y T
\Y
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ur is based on 7(y) and k 1is the roughness height. It should be noted that
this damping term (with roughness) could be greater than 1.

The influence of moderate acceleration (approaching laminarization, involv-
ing significant alteration of the sublayer) upon A* was investigated by
Launder and Jones (ref. 183). They proposed the following expression:

A* = 11 + T7900L (L > 0.0019) (47)

where the pressure gradient parameter L is

L=c§2/3L23_ue
Ug X

This expression has not yet received detailed consideration for compressible
flows.

Prandtl Wall Constant

From available data, there is no appreciable effect upon K of either com-
pressibility (general computational experience, ref. 184), low Reynolds number
(refs. 179, 185, and 186), wall blowing (refs. 184 and 185), or surface rough-
ness (refs. 45 (pp. 396-398) and 187). There is, however, a moderate influence
of pressure gradient upon K, as shown in figure 27 (taken from ref. 188). From
the work of Lewis, Gran, and Kubota (ref. 139), the Clauser pressure gradient
parameter Bg (and therefore fig. 27) is applicable to compressible flow if &%
is taken as 63. Except for apparent pressure gradient effects (results similar
to those in fig. 27 were also observed in ref. 30 (pp. 10-1 - 10-13) for super-
sonic flow), the wall slope K is the most constant of the mean field closure
"constants."

Outer or Wake Constant

The present section discusses the behavior of (1/8)pax (eq. (39)) instead
of oa; the behavior of a (eq. (40)) is quite similar, and in most instances
the two expressions (eqs. (39) and (40)) give similar results. Figure 28 pro-
vides a typical comparison between the use of equations (39) and (40) for calcu-
lation of surface shear. For this low hypersonic case with moderate wall cool-
ing, the mixing length is in slightly better agreement with the data. From the
classic work of Maise and McDonald (ref. 79), there is no appreciable Mach num-
ber effect upon (1/8)pax. There is, however, a large low Reynolds number
effect. Recent research (ref. 189) has strongly indicated that this low-
Reynolds-number effect is caused by the residue of the boundary-layer transition
process.

One method of correlating the low-Reynolds-number effect is with a scaling
parameter &%, where

8§+ = Sur , max (48)
V1«
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In references 176, 186, and 189 this parameter successfully correlated the
low Reynolds number effect over a wide Mach number range. For the low-speed
case a parameter Rg is sometimes used (ref. 175) when dp/dx = 0. Working
with this expression for &%, one can show that &+ « €/u or a turbulence
Reynolds number as follows:

6t = 6—@—‘/—5 (49)

From the Townsend or Bradshaw assumption of the relationship between e and T,
pu'vt « e p x1 (50)

Therefore,

P Ve (51)
u

From the Prandtl model for €

€ x1p & (52)

and identifying 1 with & one obtains

+ o« E (53)
S H

The extent of the low-Reynolds-number amplification is indicated in fig-
ure 29(a) (from ref. 189) where (1/8)p,x was derived from experimental veloc-
ity profiles for flat plates, cones, and cylinders. Increases of a factor of 2
or more in (1/8)pax above the usual levels (0.07 to 0.09) for values of &+
near 100 are observed. Since u'v' (1/6)max, this represents an increase of a
factor of 4 or more in turbulent shear. The evidence that this increase is a
function of distance downstream of transition is given by comparison of fig-
ure 29(a) with figure 29(b) (also from ref. 189) where (1/8)pax actually
decreases with decreasing &% for the nozzle wall case (where transition gener-
ally occurs far upstream in the settling chamber). The correlation for inclu-
sion of low Reynolds number effects should therefore be a function of both &%
(or €/u) and Ax/8, the number of boundary-layer thicknesses downstream of the
end of transition. (According to ref. 190, a value of Ax/§ of approximately
30 to 50 is needed to "wash out" the low Reynolds number effect.)

As Mach number increases, edge Reynolds numbers (such as Re,x’ Re,e’
etc.) become proportionally much larger than Reynolds numbers based on wall con-
ditions (such as &%, etec.). This is due to the large difference, at least for
wind-tunnel conditions, between the wall and boundary-layer-edge temperatures.
Therefore, as shown quantitatively in figure 30, a given value of &% (which
seems to correlate the transition-induced low Reynolds number effects) can cor-
respond to a very large value of R This implies that the low Reynolds num-
ber amplification can effect a rather 1arge portion of the boundary-layer flow
on a hypersonic vehicle.
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The outer or wake constant (1/8)p,y is also influenced by wall blowing
and pressure gradient. From the data shown in figure 31 (from ref. 53) the
level of (1/8)pax decreases as the profile becomes less full and dé/dx
increases. Reference 186 contains an excellent explanation for this effect,
which involves the problem of flow history effects. A detailed discussion of
this problem is postponed until later when nonequilibrium flows are considered.
As a final point, for the outer region model there seem to be only moderate
increases of (1/8)pax With roughness (ref. 191).

Turbulent Prandtl Number

When dealing with Npp ¢, there is a basic question of which term to model,
v'H' or 'h' Since H' = h' + U u', then v'H' = v'h' + G u u'v' and there-
fore Np, 7 = €/kp (where V'H' = KT(BH/ay)) cannot equal Npp = €/ky (where
v'h' = Kt(ah/ay)), except for M~ 0. This question is discussed in some detail
in references 53 and 192. The results of reference 177 clearly show that Npp ¢
is much more invariant with Mach number than Np,. 7. Typical Npn distribul
tions inferred from profile data are shown in flgure 32 for 1ow-speed and super-
sonic flow. Figure 32 shows data from references 181 and 193 to 196. An
expanded scale is used, and the scatter, except near the wall, is typically
+10 percent about a hypothetical mean line through the data. The scatter near
the wall is probably caused by inaccurate mean profile data in that region. The
data from reference 177 showing the problems with Np, v and Npp. { are shown
in figure 33. The Npp ¢ data at M = 7.2 agree fairly well with the low-
speed data in figure 32, indicating that there may not be a strong Mach number
effect on Npp ¢.

The evidence for a possible influence of low Reynolds number upon Npp t
is primarily circumstantial, but indicates little or no influence (at least "for
air). Figure 34 summarizes some of the more accurate Reynolds analogy data
(from refs. 197 to 201) for the low Reynolds number case. Since Np, ¢ is a
measure of the relationship between turbulent shear and turbulent heaélng, any
large changes in Npp might be expected to affect the Reynolds analogy fac-
tor. The available data do not seem to exhibit a strong trend with &%, at
least over the limited range for which data are available.

A second piece of circumstantial evidence as to the effect of low Reynolds
number on Np. ¢ is indicated in figure 35 (taken from ref. 12). The curves
shown in this flgure are the result of purely theoretical calculations based
upon an assumed model of turbulence, but they do indicate only a very small
effect of €/u wupon NPr t for the Np,~= 0.7 case. However, if the low
Reynolds number effect comes from the persistence of transitional flow struc-
tures, this evidence is not really generic. In the absence of further data no
firm conclusion can be drawn concerning the influence of low Reynolds number on
Npr,t except that no large effect has yet surfaced.

The variations of Npr t with y* (fig. 32) could also be interpreted as
indicating a variation of NPr t Wwith €/u, but this influence of low Reynolds
number near the wall results in reduced shear (e. g., ref. 202) as opposed to the
influence of low Reynolds number in transitional flow structures, which results
in increased shear. Therefore, as stated previously, e€/p (or &% or y*) is
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not sufficient to adequately identify or correlate the various low Reynolds num-
ber influences. These low Reynolds number problems obviously require further
definitive research, especially in regard to Npr’t.

The data from references 196, 203, and 204 indicate only a small influence
of wall blowing on Npr’t. In reference 204, data with near equilibrium pres-
sure gradients indicate that Np, t values do become somewhat lower in the law-
of -the-wall region for the positive dp/dx case.

Intermittency Normal to the Wall

Another ingredient often used in mean field closure procedures is a normal
intermittency factor Fy, which is generally defined as the percentage of time
that the flow is turbulent. This factor accounts for the superlayer or intermit-
tent nature of the outer region in turbulent boundary layers. For high Reynolds
number calculations ((€/U)pgx > 100 to 200) the inclusion of TI'y 1is generally
a second-order effect (refs. U5 (pp. 366-374), 53, and 205); however, Ty can
become important for (e/u)psx < 100 (ref. 53).

Typical distributions of Fy are shown in figure 36 (from ref. 25) for
the low-speed and hypersonic cases. These data indicate that a fully turbulent
flow occurs much farther out in the boundary layer for the high Mach number
case, and that, even for the.simple dp/dx = 0 case, Fy is a function of M.
In addition to this Mach number effect, the data of Fiedler and Head (ref. 206)
show that Fy can be a strong function of pressure gradient. The influence
of roughness on Fy is evidently fairly small (ref. 207).

APPLICATIONS OF MEAN FIELD CLOSURE METHODS

Particularly during the last 8 years the literature has been rife with com-
parison between theory and data for mean field prediction methods. These compar-
isons indicate that mean field closure approaches yield predictions which are
quite accurate over a wide range of conditions. (See especially refs. 12, 28,
and 30.) 1In this section, comparisons of prediction and data for the more usual
cases (such as dp/dx = 0, wall blowing, or equilibrium flows) will not be con-
sidered, but instead, the more unusual situations, such as a diagnosis of nozzle
wall boundary layers and transitional flows, among others, will be treated.

The Case of the Nozzle Wall Turbulent Boundary Layer

Thick, fully developed turbulent boundary layers have been difficult to
obtain on models at high Mach number as a result of (1) the increase in transi-
tion Reynolds number with Mach number (e.g., ref. 208), (2) the notorious diffi-
culty in tripping high Mach number boundary layers, and (3) the general decrease
in test section size of hypersonic facilities compared with the low-speed facil-
ities. Therefore, a great deal of the hypersonic turbulent boundary-layer pro-
file data were taken in nozzle wall boundary layers, which are readily available
and usually of the order of 5 to 50 em thick.

38




However, as can be readily seen with the help of sketch (e¢), there are sev-
eral problems with these nozzle wall boundary-layer data. First of all, the
measuring stations usually cover a small range of Ax/8 (data taken in test sec-
tion region only with § quite large). These data are therefore not very satis-
factory as test cases for the mean field methods, as these procedures are of the
parabolic type and the solution proceeds in the streamwise direction. The data
are usually taken at a specified x-location for a range of unit Reynolds number,
rather than over a respectable range of Ax/8 at a given unit Reynolds number.

pe,ue.pe ETC. = f(x)

USUAL MEASUREMENT
REGION

Sketch (c)

The second problem involves so-called "history" effects. Although the
flow may locally inhabit a region where dT,/dx = 0 and dp/dx = 0, just a few
boundary-layer thicknesses upstream the gradients in these quantities are often
quite large and there is a question of how fast the wall boundary layer loses
the "memory" of these gradients. Of course, it is possible to make measurements
at several stations along the nozzle, starting with a measured profile near the
high gradient (large dp/dx) region (such as in ref. 47). This produces a quite
interesting but theoretically undemanding test case (boundary-layer recovery
from a favorable pressure gradient).

An additional problem in the nozzle wall data is that of low Reynolds num-
ber similitude. This problem concerns the early transition (usually in the set-
tling chamber) and subsequent early "loss of memory" of the transitional flow
structures. This problem was covered previously in connection with figure 29
and indicates that the nozzle wall data for low values of &%+ may be applicable
only to a limited class of applied flows, such as where roughness induces early
transition on the nose of a vehicle before the boundary layer undergoes the
expansion to afterbody flow conditions.

Several investigators have studied these various nozzle wall problems (such
as refs. 176 and 209 to 212). Figure 37 indicates typical total temperature and
velocity relationships obtained on flat plates, cones, and cylinders (small
dp/dx and T,(x) history), and figure 38 illustrates the nozzle wall case.
These figures (taken from ref. 208) are now quite old (made up approximately
8 years ago); however, the differences between the flat plate and nozzle wall
data (that is, the differences between a linear variation of Ty and u as
opposed to a quadratic variation) have also been consistently observed in the
more recent data. The development of the quadratic variation is clearly seen in
figure 39 (taken from ref. 212).
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In summary, the current status of the nozzle wall data indicates that for

M > 5, an adiabatic wall, and large values of &* (greater than 2000), the noz-~
zle wall profile data in the test section region are fairly typical (in approxi-
mate agreement with the flat plate case). (See ref. 190.) For large values of
§*, M > 5, and a nonadiabatic wall, the velocity profiles are still fairly
typical (ref. 190), but the Ty profiles are evidently out of equilibrium

(ref. 209). For low values of &% (without relaminarization downstream of the
throat), the profiles are evidently correct only for practical cases where tran-
sition is far upstream.

Influence of Wall Blowing Upon Skin Friction

The conventional method of representing the influence of porous wall injec-
tion upon skin friction is with a similarity plot of Cg/Cr o, against 2F/Cf’0
An exhaustive review article by Jeromin (ref. 33) presents the available data in
these coordinates. (See fig. 1 of ref. 33.) Jeromin's plot indicates a strong
Mach number effect upon skin friction reduction due to blowing. Several predic-
tors (refs. 213 to 215) have examined the question of a Mach number effect in
these coordinates, two of these since the publication of Jeromin's review.
Reeves (ref. 30 (pp. 6-1 - 6-A2-2)) calculated a weak Mach number effect, but his
résults indicated separate influences of Reynolds number and the ratio of wall
temperature to total temperature, which could account for some of the apparent
Mach number effects. Squire and Verma's (ref. 213) calculations (fig. 28 of
ref. 213), in which a conventional mean field turbulence modeling procedure was
employed, indicated very little influence of either Reynolds number, Mach num-
ber, or T,/Ty, at least for Ry g > 8000 (the lower limit for their calcula-
tions). This result is similar to conclusions reached in the early work of
Rubesin (ref. 215). Landis (ref. 214) attributed most of Jeromin's Mach number
effect to the influence of T,/T¢.

The data which indicate the strongest Mach number effect are those of
Danberg (ref. 216). When the low Reynolds number effects are included in the
analysis of Danberg's data (value of Cf o redefined), the final result for
the available Mach number range (data and theory) is shown in figure 40 (from
ref. 217). There is apparently very little Mach number effect, and the data are
correctly predicted by the mean field closure methods. There is insufficient
experimental data to determine any possible effect of the ratio of wall tempera-
ture to total temperature.

Transitional Flow Calculations

The now classical approach to calculation of the transitional flow region
between laminar and turbulent flow is to multiply the usual u'v' model by a
streamwise intermittency factor TI'y to account for the increasing presence of
turbulent bursts (e.g., refs. 142, 153, and 164). Using the definitions of xi,
and Xtp epnd indicated in sketch (d), the expression usually used for the inter-
mlttency factor is (from ref. 218)

2
-0. u12<x th)
Fy=1-e Ax
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where

Ax = *tr,end ~ ¥tr (54)
2.96

Sketch (d)

To apply this expression to a problem or a set of data, the x¢, and
Xtp,end Values must be known. Typical values of the ratio Xgp end/Xtr (or
the ratio Ryp end/Rtp, which is the same thing for dp/dx = 0) are shown in fig-
ure 41 (from ref. 219). A nominal value of 2 for the ratio of X, epnq and
Xyp 1is seen to be a reasonable approximation over a large Mach number range.
(See also ref. 201.) Therefore, the problem is reduced to a specification of
Xtp, a discussion of which is beyond the scope of the present report. (See, for
example, ref. 220.) A comparison between equation (54) (which gives low-speed
values of TIy) and hypersonic measurements of Iy is shown in figure 42
(from ref. 59). The high-speed data are in relatively good agreement with the

curve from equation (54), indicating that the latter may be used with some
confidence.

For accurate transitional flow calculation in compressible flow, the
precurser effects (discussed previously) should be included. An example of
the increased agreement obtained when these precurser and low Reynolds number
effects are included is given in figure 43 (from ref. 58).

Additional "Nontypical" Applications of Mean Field Closure Methods

Variable edge entropy.- This problem is caused by the mass "swallowed" or
entrained by the boundary layer along the afterbody of slightly blunted vehi-
cles. (See sketch (e).) As the boundary layer swallows the high entropy stream-
lines, the edge properties possess a variable entropy condition. The actual
edge conditions are determined by equating mass flow in the boundary layer at a
given body station mp; to the mass flow in an entering stream tube mgpgek-
This problem was treated in reference 221, using a mean field closure aproach.
Figure 44 (from ref. 221) indicates the better agreement resulting from consider-
ation of variable entropy.

Transverse curvature influence.- Cebeci and Smith (ref. 12) have treated
this case quite well, using a mean field approach. The problem arises when
8/ro =~ 0(1), where r, is the local body transverse radius of curvature.
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Sketch (e)

According to reference 12, the outer region formulation is unchanged. The inner
and wall damping regions are altered to

- e n (£_>
r A r.c
L= K(r'_>1/2r'c 1n (r_) 1-e (55)
o o

Using this expression Cebeci and Smith obtained good agreement with data on a
0.061-cm-diameter needle at M_ o 5.8.

Longitudinal curvature influence.- The definitive review work in this area
is a fairly recent report by Bradshaw (ref. 222). The usual effect is for con-
vex curvature to reduce the Reynolds stress and entrainment and for concave cur-
vature to increase the shear over the no-curvature level for the same pressure
gradient. There are evidently four distinct effects of longitudinal curvature
upon compressible turbulent boundary-layer physics and calculations. The first
of these effects is the influence of additional longitudinal curvature terms in
the mean flow equations. These extra terms were included in the calculation
methods of references 167 and 223 and calculations in reference 224 using the
code of reference 167; the results of these calculations indicate better agree-
ment for a flow with mild concave curvature when these terms are included.

The second effect is unique to compressible flows, in that longitudinal
curvature can induce a large pressure gradient in the boundary layer. This
influences the flow even beyond the boundary layer and creates a nonuniform free
stream (i.e., induces ug(y) for y > §). This occurs primarily as a result of
the Prandtl-Meyer type of flow turning which is a typical feature of compressi-
ble flows. Therefore, the expression dp/dy = 0 is no longer true, and the cor-
rect p(x,y) behavior must be included in boundary-layer prediction procedures;
that is, one must have the correct value of pjgea1l toO compute a density, and
op/3dx 1is now a function of y. The codes of references 167 and 223 both
include this capability.
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The third effect of longitudinal curvature is the influence on the turbu-
lent structure itself. Bradshaw (see ref, 222) has given a correction factor of

the form
(1) 1 -8 Yre (56)
S/t ou/dy

0(10)

O |~

where

B

q

This term is generally applied in an average sense to the outer region flow
using the wall curvature for r, and provides a first-order correction for mod-
erate curvature (herein defined as convex radius of curvature large enough so
that laminarization does not occur and concave radius of curvature large enough
so that Goertler vortices are not important and separation does not occur).

The fourth effect of longitudinal curvture is illustrated by experimental
data, which indicate that for &/r, > 0.005 (which is not very large), concave
curvature can generate steady, longitudinal Goertler vortices embedded in the
outer portion of the turbulent boundary layer (ref. 225). The presence of
Goertler vortices converts a readily solvable two-dimensional boundary-layer
problem into a more complex three-dimensional turbulence problem of the
parabolic-elliptic type (recirculation in the crossplane). Much more research
is needed before quantitative predictions about the latter type of flow can be
made. :

Calculations for adverse pressure gradient in compressible flow.- There is
currently some controversy concerning the capacity of turbulent boundary-layer
calculation methods to compute adverse pressure gradient flows for the compressi-
ble case. Bradshaw, in reference 226, partly on the basis of disagreements
between his procedure and data, suggests that a mean dilitation correction is
needed before satisfactory results can be obtained. Part of the problem in this
area is due to the fact that the early (pre-1969) data for adverse pressure gra-
dient compressible turbulent flows were taken on bodies where positive values of
dp/dx were induced by longitudinal curvature, thereby introducing all the possi-
ble problems just discussed. However, Bradshaw (in ref. 226) considers the
newer data, where the waves causing the adverse pressure gradient are impressed
upon a flat surface.

One example of an adverse pressure gradient calculation (on a flat surface)
is given in figure 45, and the external Mach number distribution for this flow
is given in figure 46. The data are from reference 139 and the mean field calcu-
lation method is taken from reference 12. In this case the comparison is quite
good. A check calculation made by the present authors using the method of ref-
erence 53 yielded similar agreement with the data. On the basis of these
results, the question of whether Bradshaw's dilitation correction factor
(ref. 226) is really required to compute adverse pressure gradient compressible
flow is still open.

43



NONEQUILIBRIUM AND MEAN TURBULENT FIELD CLOSURE
Physical Problem

Primarily as a result of the large difference in scales between the inner
(near wall) and outer portion of turbulent boundary layers, the inner portion
(with scales of the order of y) reacts much faster to a change in boundary con-
ditions than the outer region (with scales of the order of ¢). This is shown
schematically in sketch (f). The value of Ax/8 necessary for the outer region

— Ax —
5} )
A R TR RO R Y
B ~ 301090 — CHANGE IN BOUNDARY CONDITION

Sketch (f)

flow to "relax" and equilibrate with the new boundary conditions is of the order
of 30 to 90.

Therefore, as discussed earlier, for rapid changes in boundary conditions a
rate equation is needed for the computation of wu'v' in the outer region (and
perhaps for A* as well; see ref. 181). The turbulent field cannot instanta-
neously follow or track rapid changes in the mean flow. A nonequilibrium situa-
tion can be set up by the sudden removal or application of a pressure gradient,
wall injection or suction, wall temperature gradient, or wall roughness. Larger
changes, such as those caused by shock-wave impingement and large obstacles or
steps, may cause the flow to violate the boundary-layer assumptions. In addi-
tion to the computation of nonequilibrium flows, u'v' rate equations and mean
turbulence field models are also necessary for including free-stream disturbance
boundary conditions and for calculating the various turbulent second-order
correlations. '

There is a zeroth-order nonequilibrium modeling which involves a rate equa-
tion for the mixing length or outer region constant. This equation is usually
of the form

*
81 %§ = C(€equilibrium = €) (57)
Simple expressions or rate equations of this general form were used in refer-
ences 30 (pp. 6-1 - 6-A2-2 and 29-1 - 29-10), 45 (pp. 375-383), 227, and 228 and
do tend to give at least the correct qualitative behavior, the problem being
that the decay constant can change with the particular flow involved; that is,
the equation has the correct form but the absolute rate of return to equilibrium
is uncertain. Therefore, the balance of this section is devoted to methods
based upon rate equations derived from the Navier-Stokes equations (second-order
correlations or Reynolds stress transport equations).

Second-order equation closure methods (or mean turbulence field methods)
have been applied rather extensively to low-speed turbulent boundary layers.
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(See refs. 21, 172, and 229 for reviews of this work.) However, their applica-
tion to compressible flows has been rather limited, perhaps as a result of the
following: (1) relative success of the mean field methods, (2) dearth of accu-
rate data for nonequilibrium compressible turbulent boundary-layer flows (i.e.,
very few interesting test cases), (3) questions concerning possible importance
of p' and p' terms in these equations, and (4) lack of sufficient data on
the fluctuation field for the compressible case (for modeling purposes).

Equations and Modeling for Compressible Nonequilibrium Flows

The Reynolds stress transport equations (or Ry 3 equations) are generally
obtained by (1) multiplying the Navier-Stokes equations for uj by uj, (2) mul-
tiplying the Navier-Stokes equations for u; by uj, (3) adding these two equa-
tions, (4) substituting for instantaneous values the usual mean plus fluctuation
portions and Reynolds averaging, (5) substracting out the kinetic energy equa-
tion for the mean flow, and (6) imposing the usual boundary-layer order of mag-
nitude analysis. The result of all this is an_%quation for uiu’. From this
equation one can obtain (1) an equation for uj (i=3=1, 2, 3), (2) an equa-
tion for u'v' (i =1, j = 2), and (3) an equation for e = u'? + v'2 4+ w!

sum of equations for uj2>. The general form of these second-order equations
is usually the following:

Convection = Production + Diffusion - Dissipation

Details of the derivation of these equations are available, for example, in ref-
erences 36, 42, 148, 159, and 230 for the compressible turbulent kinetic energy
equation and in references 43 and 156 for more complete sets of the second-order
compressible equations. Reference 12 represents probably one of the best refer-
ences for general discussion and derivation of the second-order equations for
both low and high speeds.

From computational experience, the critical portion of the development of
a good nonequilibrium turbulent boundary-layer calculation procedure is an accu-
rate equation for the length scale of turbulence (refs. 36 and 45, pp. 275-299).
The results of the calculations for nonequilibrium flows are usually not
extremely sensitive to the details of the modeling used in the second-order cor-
relation equation, but the length scale determination must be nearly correct for
a good prediction.

There are three approaches usually used to derive a length scale equation:
(1) form an equation for the turbulence dissipation D and relate this to L
through the usual model for D (D =~ e3/2/L) (ref. 8); (2) use an equation for
the two-point correlations, which introduces a length scale quite naturally; and
(3) use the turbulent vorticity equation and relate to L, for example, through
the expression L = el/2/y (refs. 231 and 232). An alternate approach to the
length scale problem is to use an algebraic relationship (such as a function of
y/8, for example), which is assumed known (ref. 148). This latter method does
not yield satisfactory results for truly nonequilibrium flows (if the length
scale being solved for is the one used in modeling the Reynolds stress).

45



Single-Equation Models

Bradshaw approach.- This method (ref. 36) gives a second-order outer region
solution based upon the conversion of the turbulent kinetic energy equation into
an equation for u'v' by assuming that aq = T/2pe = Constant. The only length
scale which appears is in the dissipation term; this is a very important aspect
of the method, as Huffman (ref. 233) has shown that this length scale L (for
dissipation) is much more invariant than the usual mixing length (which is used
to model turbulence production), as can be seen by comparing figures 47 and 48
(from ref. 233). Bradshaw's ajq is also relatively invariant, even for nonequi-
librium flows, as indicated in figures 49 (from ref. 233) and 50 (from ref. 234).
Bradshaw, by using a4, evidently sidesteps the problem of modeling the produc-
tion term with a length scale and then having to derive and solve an equation
for that scale. The length scale which Bradshaw uses (in the dissipation term)
is evidently fairly invariant, and therefore, his one-equation method (u'v' equa-
tion plus algebraic length scale) should yield predictions which are as accurate
as the more common two-equation models (e and 1 equations).

Method of Shamroth and MeDonald and method of Chan.- These procedures
(refs. 159 and 155) use the integral form of the turbulent kinetic energy equa-
tion and Bradshaw modeling (aq and L). The procedures are, at least approxi-
mately, integral forms of the Bradshaw closure approach and seem to be fairly
successful in predicting nonequilibrium flows. The method is inherently fast
and relatively accurate and is a good choice for a simple nonequilibrium
boundary-layer calculation procedure.

Two-Equation (and More) Models for Compressible Flows

Method of Wilcox and Alber.- This procedure (ref. 231) solves the turbulent
kinetic energy equation and the fluctuating vorticity equation. Mass-weighted

averages are used along with the Prandtl model for u'v' = e1/21(3u/dy).

Method of Spalding and Gibson.- This method (ref. 232) is quite similar to
that of reference 231 in basic concept (e, ®w equations used) but quite differ-
ent in detail and application. Neither of these procedures has yet seen much
application in highly nonequilibrium compressible flows.

Method of Donaldson and Sullivan.- This method (ref. 156) solves the com-
plete set of second-order boundary-layer equations (u'<, v'2, ;TZ’ u'v',
T'T', u'T', and Vv'T') and therefore does not have to use a turbulent Prandtl
number. However, most of the p' type terms were neglected. The latest ver-
sion of this method (in publication) includes a length scale equation. The type
of detailed information obtainable from this type of closure is shown in fig-
ures 51 and 52.

At the present time there are insufficient detailed data available to
develop "calibrated" nonequilibrium (mean turbulence field) closure methods for
compressible turbulent boundary layers.
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CALCULATION OF THREE-DIMENSIONAL COMPRESSIBLE
TURBULENT BOUNDARY LAYERS
Status

A general method for solving three-dimensional compressible turbulent
boundary-layer flows is not currently available; however, a limited number of
problems have been solved using special techniques for each case. Blottner
(ref. 235) presents a review of specialized and approximate solutions of the
laminar three-dimensional boundary-layer equations. General three-dimensional
boundary-layer computer codes require the following: (1) an efficient and accu-
rate numerical procedure, including the required logic to automatically change
the difference molecule as a function of local flow conditions, (2) a general-
ized curvilinear coordinate system convenient for the design engineer, (3) accu-
rate turbulence models for the Reynolds stresses, and (4) a three-dimensional
inviscid flow field solution which is compatible with the boundary-layer coordi-
nate system.

A number of general numerical procedures and computer codes have been
developed for two-dimensional and axisymmetric turbulent boundary-layer flows
(e.g., see refs. 53, 142, 164, 202, and 236 to 242). This success was extended
to a particular class of three-dimensional flows designated as quasi-two-
dimensional (retains computational advantage of two independent variables while
allowing large cross-flow components) by Hunt, Bushnell, and Beckwith (ref. 243).
Numerical solutions for general three-dimensional flows did not materalize until
after 1972 because of computer systems limitations (storage and processing speed)
and the lack of accurate three-dimensional inviscid flow field solutions required
for boundary-layer-edge input conditions.

Since 1972 an intensive research program on three-dimensional boundary-
layer flows has been under way at a number of research centers. This effort is
stimulated by increasing awareness of potential savings in cost and man-hours
through numerical simulation of complex flows; often these flows cannot be simu-
lated in ground test facilities (such as, for example, real-gas boundary-layer
flow over the space shuttle). Substantial progress has been made as a result of
the increasing availability of large-storage, high-speed computer systems and
the maturing of accurate numerical procedures and computer codes for solving the
three-dimensional inviscid equations for complex configurations. (See refs. 244
and 245.) Some of the more important areas of three-dimensional boundary-layer
research are as follows: coordinate systems and transformations, numerical solu-
tion techniques, turbulence modeling, geometry, initial conditions, inviscid
boundary conditions, inflow lines, regions of influence and dependence, and
numerical optimization for perfect-gas flows as opposed to real-gas flows.

These specific areas will be discussed in detail in subsequent sections of the
present review.

The primary purpose of this section is to discuss in detail problems associ-
ated with development of three-dimensional compressible turbulent boundary-layer
codes for application to complex aeronautical and aerospace vehicles and to indi-
cate progress to date in achieving this goal. Comparisons of numerical results
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with experimental data for several operational three-dimensional boundary-layer

computer codes will also be presented.

Problems associated with obtaining accurate three-dimensional flow field
results will not be discussed. In reality, the prediction of the inviscid flow

field with the accuracy required presents a challenge as difficult as

solving

the three-dimensional compressible turbulent boundary-layer equations; however,
the inviscid flow field input will be assumed available in the present review.

(See, for example, ref. 246.)

Boundary-Layer Equations

An orthogonal curvilinear coordinate system is generally used to

define the

surface over which the boundary layer is flowing. The coordinate normal to the

surface is X3 with X3 being zero on the surface. The lines xq =

Constant

and xp = Constant define the system of orthogonal coordinates on the surface.

(See fig. 53.) The square of the element of arc (ds) in the boundary
ds? = (hy dx1)2 + (hp dxp)2 + (h3 dx3)2

where h4y, hp, and h3 are metric coefficients (or scale factors):
hq = hq(xq,x2) hy = h2(X1,X2)

The metric coefficient h3 is generally assumed to be unity (hgy = 1)

boundary layer is assumed to be thin. The governing equations (first
then be written as follows, where hy 1is included for generality:

layer is

(58)

(59)

since the
order) can

Continuity
9 (hohapuq) + 9 (hqhzpup) + -9 (hihopuz) = O
8x1 2h3puy 8x2 103pup 3X3 1112PU3 (60)
X 1-momentum
ouy EEl + Pu2 duy + pu3 duy _ pujuoKq + pupKs = - 1 ap
h1 3X1 h2 3X2 h3 3}(3 hq 3}(1
1 3 [u du v o)
+ 1 9 /H —~1 - pujug
h3 3X3<h3 3X3
(61)
Xp-momentum
puy dup + Pu2 dup + PU3 dup _ uquoKs + puiKq = - L 3P
Wy 3% | mp 3%p | b3 Bxg L o1eR2 T AN Z T axs
1 3 f(u dup _ T
+ 2 9/ "¢ - pusu
h3 3X3<h3 0x3 2 3)
(62)
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Energy

PUT 9H ,PU23H ,PU3PH .1 3 | u 3H
hqy 9x4 ho 9X> h3 3X3 h3 3X3

2 4 w2\ ——
spft - 1\L 3(“1 *“2>-pu§H' (63)
Npp h3 3X3 2

where

pu3 = pug + p'u3

The geodesic curvatures of the surface coordinate lines are

Ky = -1 3 (64)
hqhy 3x5

Kp = - 132 (65)
hqho 9x4

The governing equations are completed with the perfect-gas equation of
state (see refs. 245 and 247 for real-gas flows)

p = pRT (66)
a viscosity law
u = £(T) (67)

and suitable models or transport equations for the Reynolds stress terms appear-
ing in the equations.

Obvious differences between the equations for three-dimensional (eqs. (60)
to (67)) and two-dimensional (egs. (1) to (4)) boundary-layer flows are the
appearance of the cross-flow terms in the continuity and streamwise momentum
equations and the addition of a second momentum equation for the cross-flow
direction. However, the most important difference between two- and three-
dimensional equations is that the three-dimensional equations are hyperbolic
rather than parabolic in coordinate planes parallel to the wall boundary. The
hyperbolic character of the three-dimensional equations has been recognized by
a number of authors (see refs. 248 to 257) and arises naturally from the varia-
tion of the cross flow along the coordinate line normal to the wall boundary
(x1 o Constant, xp = Constant). Streamlines originating at different points
along this normal line diverge in the downstream direction. These streamlines
originate at different upstream locations; consequently, wedge-shaped regions
of influence and dependence are associated with three-dimensional viscous flow
and extend upstream and downstream from the computational point along the normal
to the wall boundary. This characteristic of the three-dimensional boundary-
layer equations is generally referred to in the literature as the influence
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principle. (See ref. 248.) A schematic showing the regions of dependence and
influence is presented in sketch (g). A more complete discussion is presented
by Raetz (ref. 248), Kitchens, Gerber, and Sedney (refs. 254 and 257) and Wang
(ref. 256).

r—INVISCID STREAMLINE

ZONE OF DEPENDENCE ZONE OF INFLUENCE

BODY SURFACE

SURFACE STREAMLINE
Sketch (g)

The required boundary conditions for the governing equations (eqs. (61) to
(63)) are as follows:

N
x3 = 0 (wall)

U1 =0

U2 =0

u3 = uw(x1,x2)

T = Tw(X1,X2) or <31_> = dw(X1,X2) (68)

X3 W

x3 > ® (edge)

ug = uq el(xq,xp)

up = up o(x1,%2)

T = Te(xq,X0) )

The governing equations for the inviscid flow at the outer edge (X3 + o)
are evaluated from equations (61) to (63) as follows, where the static tempera-
ture is utilized instead of the total enthalpy:

X {-momentum

2
- U] eUp Ko + Up oKy = - 1 3P 6
1,eU2,ek2 2,elq WYRET (69)
e

Uj,e duj,e , U2 e dUp e
h1 QX1 ho 9Xo
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Variable entropy and vorticity can be treated by the system of equations; how-
ever, its proper treatment is very complex for three-dimensional flows. The
reader is referred to Mayne (ref. 255) and Popinski and Davis (ref. 258) for
blunt cone flows and to Kendall et al. (ref. 2U5) for general configurations.
The proper treatment of variable entropy is of primary importance for some
applications such as the space shuttle.

Two general approaches may be followed in evaluating the required edge con-
ditions: (1) the pressure gradient terms required in equations (61) and (62)
(dp/dxy, i = 1, 2) can be obtained by direct solution of the Euler equation, or
(2) the pressure p(x4,x3) can be specified together with the appropriate bound-
ary and intial conditions and uj ¢ and Tg obtained directly from the solu-
tion of equations (69) to (71). The optimum approach is to develop simulta-
neously an accurate three-dimensional inviscid computer code with a coordinate
system compatible with that developed for the three-dimensional boundary-layer
program; in any event, accurate and consistent edge conditions are required if
accurate boundary-layer solutions are to be obtained.

The sufficient conditions required to start the boundary-layer solution
have been presented by Ting (ref. 259). In principle the system of equations
can be solved numerically by marching parabolically away (downstream) from spec-

ified initial data planes; however, the influence principle must be carefully
treated.

Coordinate Systems and Transformations

Coordinate systems.- A number of papers have been published on the solution
of three-dimensional boundary-layer flows; however, these papers have generally
used specialized coordinate systems for each test problem. The coordinate sys-
tem was generally chosen to simplify the governing equations for the particular
flow of interest. The primary concern in the selection of a coordinate system
is that it should allow the procedure to start from the initial conditions and
proceed in a logical fashion over the entire surface without having to match
together two or more distinet coordinate systems.

The majority of the references available have used streamline coordinates.
(See ref. 260, for example.) The streamline coordinate system is an orthogonal
surface coordinate system formed by the projection of the inviscid streamlines
and their orthogonal trajectories on the surface. The system has a number of
distinct advantages; however, its calculation is a major numerical effort in
itself and must unfortunately be repeated for each change in flow conditions

51



(angle-of-attack changes, for example). Another disadvantage is encountered in
the design of wings and control surfaces where displacement surface effects must
be accurately treated (for example, supercritical wing design). The coordinate
system has to be recalculated for each iterative cycle between the three-
dimensional inviscid and boundary-layer programs. This represents a major under-
taking and would be prohibitively expensive in terms of computer processing time.
Streamline coordinates also tend to diverge greatly in highly three-dimensional
flow, which results in large truncation errors unless additional streamlines are
introduced in order to retain a reasonable mesh point spacing in the direction
normal to the streamline coordinate. Consequently, it should be realized that
while streamline coordinates are optimum for many simple flows (for example,
three-dimensional stagnation point flows), they do not appear at the present to
be optimum for general three-dimensional flows. It is then advantageous to seri-~
ously consider the development of a body-oriented surface coordinate system that
would completely eliminate the requirement of coordinate system recalculation

for each change in flow condition.

A body-oriented surface coordinate system could be made compatible with the
inviscid three-dimensional computer program used to specify the required edge
conditions. The only disadvantage of an orthogonal surface coordinate system is
that the initial data lines cannot in general be made to coincide with the body
coordinate lines even for simple geometry, such as a blunt nose cone at angle of
attack. Blottner and Ellis (ref. 261) have presented an orthogonal surface coor-
dinate system whose origin is at the stagnation point for analytic bodies at
angle of attack. McGowan and Davis (ref. 262) have utilized an orthogonal sur-
face coordinate system for sharp right circular and elliptical cones at angle
of attack. However, these applications are for analytic bodies of revolution
and not for general aerodynamic vehicles. The body-oriented coordinate system
appears optimum from the viewpoints of geometry input and direct coupling with
existing three-dimensional inviscid computer codes. The system completely
avoids the time-consuming and difficult problem of streamline trajectory calcu-
lation for each change in flow conditions; consequently, inviscid-viscous cou-
pling procedures can be greatly simplified for problems where displacement sur-
face effects are important. The difficulties associated with developing
efficient procedures for numerically generating the coordinates and required
metric coefficients for an orthogonal body-oriented surface coordinate system
are more than compensated by program flexibility from the viewpoint of the engi-~
neer who must use the computer program as a design tool.

The body-oriented surface coordinate system can be chosen to be either
orthogonal or nonorthogonal. Regardless of whether the system is orthogonal or
nonorthogonal, the X3-coordinate must be chosen normal to the wall boundary.
Consequently, for the orthogonal system the selection of one coordinate xq or
Xo> automatically fixes the remaining coordinate because of the orthogonality
requirements. For example, if X4 1is chosen to lie along the rays of a sharp
right circular cone, then the xp-coordinate for x71 = Constant cuts the cone
in circular elements; however, for sharp elliptical cones a warped cross-section
element is formed. (See fig. 2 of ref. 262.) The nonorthogonal coordinate sys-
tem appears desirable from a number of viewpoints: (1) It can be made to coin-
cide with the location of the initial data planes; (2) it can be generated as
easily as the orthogonal system; and (3) the difference grid can be developed to
completely cover the computational region of interest - for example, swept,
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tapered wings. (See fig. 2 of ref. 244.) Further, the nonorthogonal system
results in only a minimal increase in the number of correction terms arising
from the metric tensor (see ref. 2U5) provided the cross-flow diffusion terms
are not considered (in other words, if only the classical three-dimensional
boundary-layer equations are used).

From the viewpoint of the design engineer it appears that a general compu-
ter code for solving the three-dimensional boundary-layer equations should be
developed in nonorthogonal, body-oriented surface coordinates. This system
would also allow complete flexibility and could utilize streamline coordinates
if so desired for special flow cases. This viewpoint is currently being incor-
porated in the computer program under development by Cebeci et al. (ref. 24l4)
for wing surfaces.

Transformations.- The selection of suitable transformations for three-
dimensional laminar or turbulent boundary-layer flow presents a problem since no
one transformation can be considered general. The selection of primitive varia-
bles introduces problems since the boundary layer is thin and grows at different
rates in the x¢- and xXp-coordinates; furthermore, the equations are singular
at the tip of sharp bodies. When physical coordinates are used, the solution is
extremely sensitive to the surface mesh point distribution; consequently, proce-
dures developed in physical coordinates generally require either excessively
small grid spacing distributions for the x4- and xp-coordinates or special
treatment of the spatial derivative terms in the finite-difference equations if
accurate results are to be obtained. This results directly in excessive compu-
ter storage and/or processing time. Specific problems associated with physical
coordinates are as follows: (1) excessive growth of the boundary layer in the
computational domain requiring additional mesh points in the x3-coordinate as
the solution proceeds downstream, (2) large gradients in the wall region for tur-
bulent flows requiring either closely spaced mesh points in the normal direction
or the inclusion of the law-of-the-wall relationship (not really satisfactory
for three-dimensional flow), and (3) singularities such as at the tip or leading
edge of sharp-edge bodies. The problem associated with the boundary-layer
growth can be treated with suitable stretching and normalization as presented by
Kendall et al. (ref. 245).

Transformation to similarity variables has been shown to be useful for com-
puting similar flows (see ref. 263, for example); however, their usefulness is
questioned by some authors (see, for example, ref. 245) for three-dimensional
flows which are highly nonsimilar in character. The majority of the three-
dimensional boundary-layer solution procedures now in existence use similarity
type variables. (See ref. 245.)

As in two-dimensional boundary layers the physics of turbulent flow pre-
sents a numerical problem since wall gradients are large in comparison to laminar
flow; the viscous sublayer generally requires a minimum of two to three mesh
points. Generally a geometric-progression grid point spacing normal to the wall
is employed; that is AX3,i+1 = K Ax3 i, where K = 0(1.02). It has also been
suggested that a logarithmic spacing be utilized as indicated by the law of
the wall. The main object, regardless of the transformation or stretching
selected for the normal coordinate, is to minimize the total number of mesh
points normal to the wall boundary in order to minimize the required computer
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storage and processing time. It should also be noted that the x3-transformation
generally complicates the Reynolds stress models and their inclusion in the com-
puter code; this is one advantage of using primitive variables with suitable
thickness normalization. (See ref. 245.)

To date no general transformation has been developed for three-dimensional
turbulent boundary-layer flows. Several transformations have been studied and
are presented by Blottner (ref. 242). Some of these transformations will be dis-
cussed in a subsequent section where three particular computer programs will be
presented, with numerical results compared with experimental data.

Turbulence Modeling

Research on turbulent transport equation models and turbulence structure
(e.g., refs. 30 (pp. D-1 - D-14 and B-1 - B-24) and 264) is very important since
the goal of this research is to develop one set of equations with one set of con-
stants or functional values which will adequately model all turbulent flows; how-
ever, to date no transport equation procedure has been shown to be superior to
simple eddy-viscosity models for two-dimensional, equilibrium, boundary-layer
flows. (This is not the case for free shear, jet, and wake flows.) It is
agreed by most investigators of turbulence modeling that eddy-viscosity models
leave a great deal to be desired since the physics of the flow is in general
neglected; however, from the design engineers viewpoint, the eddy-viscosity
concept works well for a wide class of two-dimensional turbulent boundary-layer
flows.

A number of rather difficult questions must be answered concerning the
extension of the two-dimensional eddy-viscosity models to three-dimensional
flow; for example, the cross-flow momentum equation requires the specification
of an eddy-viscosity coefficient for the cross-flow direction. The simplest
approximation is to assume that €45 = €4q9 (isotropic eddy viscosity). This
simple assumption implies that the turbulent stresses and mean flow rate of
strain are always parallel. However, measurements of the complete turbulent
stress tensor by Van den Berg et al. (ref. 265) indicate that the turbulent shear
stress level in three-dimensional boundary-layer flow is lower than would be
expected from extrapolation of two-dimensional theory; also, the local shear
stress direction does not in general coincide with the direction of the velocity
gradient. Experimental data indicate that the eddy viscosity should be lower
in the cross-flow direction; that is, e€yp/€x7 < 1. One might assume that
Ex2> = OExq where o < 1; however, this approximation is unsatisfactory (see
ref. 266) unless some empirical functional relationship between €yxq and €y
can be determined which allows accurate numerical prediction of a wide class of
three-dimensional boundary-layer flows. This approach may become feasible as
accurate three-dimensional experimental data are obtained. Two-dimensional eddy-
viscosity models were developed to their current level primarily as a result of
the availability of a wealth of experimental data; the same data base must be
provided for three-dimensional flows for successful models to be developed.

In the present paper, closure through the solution of transport equations
will not be discussed in further detail. The reader interested in this approach
is referred to references 172 and 267 to 269 for examples.
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Closure of equations (61) to (63) requires that an effective viscosity
Merf and thermal conductivity Kgrr Dbe expressed in terms of the mean flow
variables. The Reynolds stress terms are defined as follows:

T v au‘]w
-p uquy = € —_—
p uqug x1 BX3
-0 upu3l = €42 duz (72)
3X3
-p uéH' = € %E_
X3
S

The further assumption is made that €41 = €xp = € and a turbulent Prandtl num-
ber is defined which relates the effective conductivity and effective viscosity.
The following relations can then be formulated:

Heff = u(1 +§ r) (73)
and
- CpM e Npr
NPr( U Npp ¢

The streamwise intermittency function Ty (ref. 218) models the transitional
region of flow and is a function of xq and xp (0 Ty < 1; Ty =0 for lami-
nar flow; Ty = 1 for turbulent flow). The effect of pressure gradient on inter-
mittency is presented in reference 270. For the present discussion it is

assumed that the initiation and completion of the transitional flow region are
specified; however, correlation relations could be directly incorporated into a
computer code.

The simplest eddy-viscosity approach (see fig. 54) is to assume that
the eddy viscosity is a scalar function independent of coordinate direction
(refs. 168 and 243). The following models are considered since they are used
in most current three-dimensional, compressible, turbulent, boundary-layer
programs:

Single-layer model

_ore2d 1 |faun\?, [aup)?
€ = PL9c —|[—L) + [—< Ty (75)
h32 ax3 9x3
where
-k, tann(X1 X3 \p (76)
X3,e ko X3 e
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A = A+<E> <ﬁ) (78)
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Iy = (79)
2
2 21\1/2
Ty = <Tx1 + Tx2> (80)
Two-layer model
Inner law
5 2 5 2 1/2
. = 2 1 Ui up
€inner = P12 ;;5 <§;§> + (5§§> I‘y (0 < X3 £ X3,c) (81)
Outer law
€outer = KupVed*ly (x3, 0 < X3 £ X3 ¢) (82)
where
1p = KX3D (83)
> 5 172
Ve = \U1,e + u2,e> (84)
X3 e 2 o\1/2
S* =f 1 - (“1 + up ) dx3 (85)
0 Ve

The point where the inner and outer laws are matched X3 ¢ is obtained from the
continuity of eddy viscosity; that is, €jipnner = €outer- (See sketch (h).) No
attempt is generally made to assure continuous derivatives for the two laws; how-
ever, the single law is continuous and appears to be as satisfactory as the more
complex two-layer relationship (ref. 271). Three-layer models have been pro-
posed by Pletcher (ref. 158), but there does not appear to be any advantage to
the multilayer models above the single-layer mixing length model (eq. (75)) or
the two-layer model (egs. (81) and (82)). The normal intermittency factor
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(eq. (79)) proposed by Klebanoff (ref. 272) is generally approximated by the
following relationship:

-1

Ty = {1 +5.53 (86)
X3,e

For high Reynolds number flows the constants ki appearing in equations (75) to
(83) are generally assigned the following values: kq = 0.4 to 0.435, kp = 0.09,
A* = 26, ky = 0.0168, k5 = 5, kg = 0.78, and Np, ¢ = 0.95. These values rep-
resent the classical values generally used for equilibrium, high Reynolds number,
turbulent flows (see ref. 12); however, it should be noted that although the
assigned values are sufficient over a broad range of flow and wall boundary con-
ditions, modifications to these values are required for certain classes of flow
as discussed in previous sections of the present review. Typical turbulent
Prandtl number variations are given in references 273 to 275 and in figure 32.

The accuracy of the various eddy-viscosity models can only be assessed by
careful numerical experimentation in which numerical results are compared with
experimental data. These models have been compared over a wide range of test
conditions for two-dimensional high Reynolds number, turbulent boundary-layer
flows; however, their extension to general three-dimensional flows still requires
extensive study. The models (eqs. (75), (81), and (82)) have been shown to accu-
rately predict the data of Rainbird (ref. 276) for a sharp right circular cone
(adiabatic wall) at angle of attack. (See refs. 271 and 277.) However, more
demanding three-dimensional flows should be calculated and the numerical results
compared with data. The previously mentioned problem with €4, must receive
careful attention. It is not sufficient to simply assume €yp 1is some percen-
tage of €4q; this has been indicated in reference 265 for infinite swept-wing
flow.

Numerical Solution Procedures

A number of research papers have been published over the past few years
dealing with numerical procedures for solving the three-dimensional boundary-
layer equations for laminar and turbulent compressible flow. Currently, there
is no general method for solving the three-dimensional boundary-layer equations
(ref. 235); however, significant progress has been made in the development of
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such procedures by Kendall et al. (ref. 245), Cebeci et al. (ref. 244), and Wort-
man (ref. 162). A limited number of problems have been solved by applying special
techniques to each specific problem (stagnation point flow, leading-edge attach-
ment flow, swept infinite wings, and sharp and blunt cones). For these particu-
lar problems it has been possible to use simple geometrical relationships (coor-
dinate system) and similarity type transformations to reduce the complexity of

the governing equations. As previously mentioned, two of the more difficult
numerical problems are (1) the generation of the surface coordinate systems and
the required metric coefficients hy, hp, and h3 and (2) the proper treatment
of the inviscid edge conditions.

The properties of the three-dimensional boundary-layer equations were first
studied in detail by Raetz (ref. 248). It was noted that the governing equa-
tions are hyperbolic in planes parallel to the wall boundary as opposed to para-
bolic for two-dimensional flow. Raetz introduced the concept of the influence
principle into the three-dimensional boundary-layer literature which results
directly from the hyperbolic character of the equations. The zones of influ-
ence and dependence for the three-dimensional boundary-layer equations have also
been examined in detail by Wang (ref. 256). The hyperbolic character of the
the equations has been utilized by Bradshaw (ref. 278) through the application
of the well-known method of characteristics, the wall region of the flow being
patched to the characteristics solution for the outer region.

In order to obtain the correct solution to the three-dimensional equations,
the solution procedure must cdrrectly account for the zone of dependence. The
stability of the procedure and the region where the solution can be obtained
with specified initial conditions are determined by the zone of dependence.

This zone thus prescribes the minimum amount of initial data that must be speci-
fied in order to advance the solution. Kitchens, Gerber, and Sedney (refs. 254
and 257) have made detailed studies of this requirement during which they sys-
tematically violated the zone of dependence requirement. Their results clearly
demonstrate that errors accumulate and grow in the numerical solution if the
zone of dependence is not satisfied. The most interesting result, presented in
reference 254, is that satisfying the zone of dependence criteria is not suffi-
cient to assure stability in all cases. The conclusion is drawn that the zone
of dependence concept is not necessarily the same as the concept of stability.
This particular result of reference 254 should be further studied since most
investigators have treated these concepts as either the same or closely related.

For two-dimensional boundary-layer flows the zone of dependence is automati-
cally satisfied, the equations are parabolic, and the procedure can march down-
stream, provided the necessary initial, boundary, and edge conditions are speci-
fied. For three-dimensional boundary-layer flows it is necessary to internally
adjust the mesh aspect ratio (see ref. 254), such that

Axp > max 1vel (87)
AX1 ul
over all interior points

Then the largest allowable Axq from one data plane to the next is
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Axq < & Axp (88)

max(|u2l/u1>over entire data plane

where & < 1. The requirement that equations (87) and (88) be satisfied in
the solution plane introduces numerical complexity for the three-dimensional
boundary-layer equations.

The numerical procedures currently being applied to solve the three-
dimensional boundary-layer equations have resulted, in general, from a direct
extension of procedures developed during the 1960's for two-dimensional and axi-
symmetric boundary-layer flows. The present review is not intended to give a
complete survey of the extension of these methods to three-dimensional boundary-
layer flows. Reviews of three-dimensional laminar boundary layers have been pre-
sented by Cooke and Hall (ref. 279), Stewartson (ref. 280), Crabtree, Kiichemann,
and Sowerby (ref. 281), Mager (ref. 282), and Hansen (ref. 283). A recent
review of two- and three-dimensional flows has been presented by Blottner
(ref. 235). Solutions of the three-dimensional boundary-layer equations have
been considered by Fannelop and Humphreys (ref. 253). The reader interested in
the initiation of numerical research in three-dimensional boundary-layer flows
should carefully review these references, as well as The European Research Pro-
gramme on Viscous Flows (ref. 266) and the results of Euromech 60 (ref. 284).
The purpose of the present section is to present three solution procedures which
are representative of current programs for three-dimensional turbulent boundary-
layer flows; two of these procedures are currently being developed as production
codes for arbitrary configurations.

Crocco variables.- The primary advantage of a Crocco-type transformation is
that the solution domain in the normal coordinate is bounded between the defi-
nite limits of 0 £ ¢ £ 1. The procedure is also attractive in that the grid
points can be uniformly placed in the velocity plane and still satisfy the
demanding mesh point distribution for the wall region of turbulent flows. The
only disadvantage of the method appears to be the restraint that velocity over-
shoot in the uq velocity component is not allcwed; that is, uq/uq ¢ must
increase monotonically from the specified wall value (slip at surface can be
allowed) to unity at the edge boundary. The transformation has been used for
laminar flows (see refs. 255, 258, 262, and 285) and for turbulent flows over
cones at angle of attack by Harris and Morris (ref. 168). A discussion of
Crocco-type variables is presented by Davis (ref. 286).

A three-dimensional compressible turbulent code has been developed at
Langley Research Center for Crocco-type variables (ref. 168). The program is
currently restricted to analytic geometry; however, work is currently under way
to extend the code to a general curvilinear coordinate system for arbitrary
geometry.

In the subject program, equations (60) to (63) are first nondimensional-
ized, and a similarity-type transformation is introduced for the x3-coordinate
and velocity as follows:

-_— -ovp L
hy =2 _L__h (89)
3 5 Rl 3
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where u_ is the reference velocity and & m /X7 for a sharp cone. The
metric coefficients hp and h3z are arbitrary functions of the coordinates.

The equations are next cast into Crocco form as follows:

u 1/2n
= _ 1 (91)
Ul e

The exponent n can be selected to minimize the number of nodal points in the
C-direction (normal to the wall boundary). The continuity and x¢-momentum equa-
tions are combined to form the shear equations, where the shear parameter ¢ is
defined by

%(1 +< rx> (92)

gonsequently, u1/u1’e is replaced by ® as a new dependent variable, and

H = u3/u1’e is uncoupled from the system of equations. The system therefore
reduces to three coupled nonlinear partial differential equations in @, G,

and @, together with an explicit algebraic relationship for H. The system
assumes the following form:

g%g + ay w Qo + O3 + Q) ow ag Ww - g (93)

g2 Cle 3L an

where w represents ©, G, and ¢, and aq, Qp, a3, oy, and Qg are non-
linear coefficients.

The boundary conditions on equation (93) are as follows:

0

When C
G =1 ® = 1 =0 (94)

When T

n
—_

G=20 > (95)

<a_<1>> = —(a1ﬁ + ap i_® + <I>>
T/ y ¢ wW_J

where_ aq and ap are functions of geometry and the inviscid edge conditions
and 1! = u/T.

Equation (93) is solved in an iterative mode with a marching implicit
finite-difference technique suggested by Dwyer (ref. 287) and modified by Krause
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(ref. 288). The method is second-order accurate and unconditionally stable (con-
ditional stability for reverse cross flow; see ref. 288). For turbulent flows a
minimum of two mesh points in the C-plane must be located in the viscous sub-
layer; consequently, careful consideration must be given to the placement of the
mesh points in the [-coordinate in order to minimize computer storage and pro-
cessing time requirements. Two approaches to the minimization problem have been
considered: the specification of a variable mesh point distribution for n = 1
of the form ATy,1/ACy = Constant for k =2, 3, .. ., N- 1 (geometric pro-
gression), and the selection of n = 3/4 which appears optimum for turbulent
flows. Variable mesh-point distributions are also used in the &- and n-planes
to minimize the computer processing time and storage requirements. A schematic
of the difference molecule is presented in figure 55(a). Equation (93) is writ-
ten at the point (i-1/2,j,k) and solved for the values of the dependent varia-
bles ©®, G, ¢, and H at the point (i,j,k). The difference relationships
used in the procedure for the Krause (ref. 288) "zig-zag" scheme are presented
in reference 271.

When a converged solution cannot be obtained at the most leeward plane,
¢ = 180° (for example, separation on leeward surface), a cubic Crank-Nicolson
differencing scheme (see fig. 55(b)) is used at the maximum n-station (ref. 261).
If this procedure were not incorporated into the program logic, one n-station
would be lost for each additional AE step because of the Krause differencing
scheme.

The marching procedure cannot be initiated without the existence of two
orthogonal initial data planes. For a sharp right circular cone these planes
of initial data are generated directly from the governing equations by using a
second-order Crank-Nicolson scheme for the two planes (§ = 0, 0 <n g Nmax and
0 €& < &paxy N = 0) where similarity exists. A discussion of problems associ-
ated with obtaining initial data planes for general configurations is presented
in reference 260.

Substitution of the difference quotients (see ref. 271) into equation (93)
results in a system of coupled algebraic equations whose coefficient matrix is
of tridiagonal form which can be efficiently solved for the dependent variables
(Thomas' algorithm). The primary problem associated with equation (93) is that
the coefficients (aq, @, etc.) are highly nonlinear. The shear equation con-
trols the convergence rate of the numerical procedure (the number of iterations
required as the system is sequentially iterated). Equation (93) can be written
for & as

3_2<I>+ E+B_1@-ﬂ¢+@+'
3r2 4 92/3C 2 )

"
[e)

(96)
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where the coefficients B¢, Bp, B3, and By are functions of geometry, invis-
cid edge conditions, and previous iterate values of the dependent variables
u1/u1,e and © and their derivatives. The problem is further complicated by
the inclusion of the turbulence models (egqs. (75) to (85)) since in the trans-
formed plane ¢ appears explicitly in the transformed relationships. Conse-
quently, the coefficients (B4, Bo, etc.) also depend on & for turbulent flows
(for laminar flows this dependence is removed). The system of equations will
not converge if the shear equation is written as shown in equation (96) because
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of the ®=1 term. Convergence can be achieved by using a Taylor's series expan-
sion of ©-1 about the previous iterate value &g; that is,

1= 1_< - <I>_> + 0(62) (97)
0] oG oq

Substitution of equation (97) into equation (96) yields

3% hi s %l_é? R ég_.Q + E§§ + §§ a0 Eﬂ ¥ -9 (98)
3z2 1 $2/9C 72 9g2 o 2 9T 2 N

Equation (98) converges in an average of five to seven iterations for
high Reynolds number turbulent flow. The wall boundary condition on & (see
eq. (95)) also presents a problem since &, 1is unknown; however, the wall deriv-
ative relationship can be directly incorporated in the iterative solution proce-
dure. In principle, it should be possible to reduce the average number of itera-
tions subtantially to a maximum of three. Research continues in the areas of
(1) restructuring equation (98), (2) treatment of the &, wall boundary condi-
tions, and (3) the problems associated with ¢ in the transformed turbulence
models. Note however that the procedure requires essentially the same process-
ing time per mesh point (0.002 sec) as the Cebeci-Keller box method (refs. 289
to 291) and that this time may be substantially reduced through convergence
accelerator procedures and/or the inclusion of Newton-Raphson iteration.

The numerical procedure and turbulence models have been applied to a number
of flows (current geometry limited to sharp right circular and elliptic cones).
Numerical results compared with experimental wall and profile data for a cone
(ref. 276) with a 12.5° semiapex angle at an angle of attack of 15.75° are shown
in figure 56. The free-stream Mach number, total pressure, and total temperature
for the experiments were 1.8, 172.4 kN/m2, and 294 K, respectively. Transition
was assumed to be initiated and completed in the region 0.03 £ i1/L < 0.08
(L = 105.6 cm). The adiabatic wall boundary condition was imposed on the energy
equation (see eq. (95)); that is, (9©/37), = 0. No experimental data were
input into the viscous flow solution. The inviscid pressure distribution
Pe = f(§,n) was obtained from a numerical solution of the three-dimensional
inviscid flow equations.

The numerical results for uq/uq e, G, and © are compared with experimen-
tal data in figure 56 for circumferential locations of ¢, 0° and 135°. 1In
order to evaluate the effect of nodal-point spacing in the Z-plane, a parametric
study was made for N = 301, 201, 101, 61, and 21 with ACy,1/80 = 1.02. The
results for N = 301 and 201 were essentially identical, and those for N = 101
were within 0.5 percent of the N = 301 results. The agreement between the
experimental and numerical results is very good for 301 points and, in general,
good for as few as 21 points. The two turbulence models (eqs. (75) to (85))
produced essentially identical results. The two-layer model results presented
in figure 56 are for N = 301; however, the two-layer results for N = 21 were
essentially identical to the N = 21 results of the single-layer model.

The results for Afy,1/AC) = 1.02 presented in figure 56 were obtained for
ne= 1. (See eq. (91).) Numerical results for AZk,1/A0Cx = 1 (equal mesh dis-
tribution), N = 21, and n = 3/4 were in slightly better agreement with the
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N = 301 results for the variable mesh point distribution; however, the differ-
ence between the two cases for N = 21 was minor. The major points that

should be noted in these comparisons are that the numerical procedure is effi-
cient and accurate and that the turbulence models are satisfactory for high
Reynolds number equilibrium turbulent boundary-layer flows. The Crocco-type
transformation and the numerical procedure allow the generation of accurate solu-
tions for a minimum of 21 points normal to the wall boundary. The computer code
requires 60000g storage (the i-1,j,k data plane is stored on disk) and approx-
imately 0.002 second per grid point processing time on a CDC-6600 computer sys-
tem. Current studies indicate that it may be possible to substantially reduce
the processing time through convergence accelerators for the shear equation

(eq. (98)) and/or the inclusion of a Newton-Raphson iteration procedure. The
current program is comparable in both storage and processing time with the
Cebeci-Keller box method (ref. 260).

Arbitrary wings.- An accurate and efficient computer code for the three-
dimensional boundary-layer flow over wings is required for the design and evalu-
ation of supercritical wings and laminar flow control surfaces (U3’w = g(xq,x2)).
Studies of wing geometry specifications have indicated that a nonorthogonal sur-
face coordinate system is optimum from the viewpoint of the design engineer.
Cebeci et al. (ref. 260) have developed an efficient and accurate procedure for
solving the three-dimensional boundary-layer equations for laminar, transi-
tional, and turbulent perfect-gas flow over general wings. The advantage of
this geometry routine -are as follows: (1) Calculation of the coordinate system
(§,n,hi,...) for each angle-of-attack or flow condition change is eliminated;
(2) discontinuities associated with patched coordinate systems are eliminated;
(3) the method is optimum from the viewpoint of the design engineer. (See
sketch (i).) Only one disadvantage is encountered in that the nonorthogonal
metric tensor results in additional terms appearing in the system of equations.
However, this increase in terms is minimal if cross-flow diffusion terms are
neglected. Preliminary results obtained in reference 260 for a typical super-
critical wing indicate computation times of approximately 30 sec on an
IBM 370/165 computer system for a 30 x 20 x 20 grid.

X3 .
, X 2 DEFINING AIRFOIL SECTIONS
- X
— 1% 3 LEAD ING EDGE
ROOT~= 1. | T~
- T TIP
X, TRAILING EDGE
Sketch (i)

The governing equations are written for a nonorthogonal surface coordinate
system for ease of placement of the mesh distribution over the wing surface. The
wing is defined in an orthogonal X1,Xp,X3 coordinate system where X1 1is in
the direction of the airplane's longitudinal axis, X, is in the spanwise direc-
tion, and X3 is orthogonal to the plane of X{ and Xp. The wing is described
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by a series of airfoil sections in planes of X, = Constant. The equations
relating the airfoil section specification and the Xj-coordinate system are
presented in reference 260 in terms of percentage chord. The equations required
for the calculation of the nonorthogonal surface mesh and the procedure with
which they are solved are also presented in reference 260.

The xi-momentum equation is as follows (see eq. (61) for orthogonal system):

ouy dup , 0up My, g5y M1 - pKqus2 ctn 6 + pKoup? ese B + pKqpuqup
hq 3X1 ho 3X2 3X3
- -csc® 83 ,ctnBesc8dp , B (M _ gy (99)
h1 3}(1 h2 3X2 8X3 3X3

where 0 represents the angle between the coordinate lines x4 = Constant and
X, = Constant. For an orthogonal coordinate system, 6 = m/2 and equation (99)
reduces identically to equation (61) for h3z = 1. The geodesic curvatures are
given by the relationships

Kq = 1 3 (hp cos 8) - dhy (100)
hqhs sin ) 3X1 3X2
Kom—_ 1 | 3 (ng cos 0) - M2 (101)
h1h2 sin 6 3X2 3)(1
The parameter K4, 1is defined as follows:
Kio = 1 _|-(ky + 1 30\ 4 cos 0(K, + 1 96 (102)
127 Sin 6[ ( ! hy 9x 2 hy, 9x5

It should be noted that the addition of correction terms for nonorthogonal coor-
dinates to the system of equations is minor for the classical three-dimensional

boundary-layer equations; however, if one wants to include the cross-flow diffu-
sion terms in the x,-momentum equation, then a significant number of additional

correction terms would be required. (See ref. 12.)

The system of governing equations is transformed through the introduction
of a two-component vector potential and a similarity-type transformation. (See
ref. 260.) The Cebeci-Keller box method (refs. 162, 289, and 290) is used to
solve the resulting system of equations. One of the basic concepts of the box
procedure is to rewrite the system of equations as a first-order system of
partial-differential equations. Consequently, derivatives of some quantities
with respect to the xq-coordinate must be introduced as new unknown variables.
Derivatives with respect to all other variables occur only to the first order
because of the boundary-layer approximations. Centered difference quotients and
averages at the midpoints of net rectangular and net segments are used in order
to produce second-order-accurate finite-difference equations. The method is
unconditionally stable for positive cross flow but appears to be unconditionally
unstable for negative cross flow. The equations are highly nonlinear and impli-
cit in structure. Newton's method is used to solve the system; a block-
tridiagonal factorization scheme is used which is efficient and stable. The
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numerical formulation of the system of equations is presented in detail in ref-
erence 28. Numerical results are compared with the data of East and Hoxy

(ref. 291) in figure 57 for several Xxq1/L stations. Numerical results for a
supercritical wing calculation are presented in figure 58.

Reacting gas flows.- The Aerotherm Division of the Acurex Corporation is
currently developing a laminar, transitional, and turbulent three-dimensional
boundary-layer computer code for application to arbitrary configurations such as
the space shuttle. (See ref. 245.) The numerical procedure is an extension of
the method presented in reference 238. This particular code includes equilib-
rium and/or frozen flow chemistry. A body-oriented orthogonal surface coordi-
nate system is used to describe the vehicle surface. The computer code is com-
patible with the accurate three-dimensional supersonic inviscid flow field
program developed by Marconi, Yaeger, and Hamilton (ref. 246). Three-
dimensional entropy-layer effects are included in the solutions. This is of
particular importance for vehicles such as the space shuttle.

The governing equations are numerically solved in primitive variables with
suitable stretching and normalization in the X3-coordinate. Similarity trans-
formations are not used since the program will in general be applied to highly
nonsimilar flows. The governing equations, in nondimensional form, are pre-
sented in reference 245, The solution domain is covered by a mesh point network
shown in figure 59. The initial data planes are assumed known at X = xj; the
solution is to be obtained at Xj,q = Xj = Axj. The functional form of the
derivatives is specified and substituted into the governing equations together
with the required boundary conditions. This procedure results in a system of
algebraic relations between the unknown dependent variables at the nodal point
in the plane located at xj,7. Normal to the wall boundary, the dependent vari-
ables are represented by a splined Taylor series between each mesh point as fol-
lows (where the prime denotes differentiation with respect to X3):

[} " AX32
Uje] = Uj + Uj AX3 + Uj >
(103)
uj+1 = uj + ug AX3
Where j represents the grid index (j =1, 2, . . ., JMAX). The equations are

integrated with respect to X3 between each mesh point. This insures that the
conservation laws are satisfied exactly between the mesh points and greatly sim-
plifies the calculation of the diffusion terms since all second derivatives are
eliminated.

In the cross-flow direction (xp-coordinate) second-order-accurate centered
difference quotients are used to replace the cross-flow derivatives; that is,
for equal nodal spacing

(.BL) = Ui g, kel Ui, 4,k-1 (104)
9%2/; 5.k Bx2 k41

where k 1is the index for the x» mesh point distribution. Axial derivatives
are approximated by the backward difference quotients of the form
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(@;_) - Yiel, g,k 7 Ui, 5,k (105)
9% 1 i3,k AX1,i

where i 1is the index associated with the mesh point distribution in the
xq1-coordinate.

A fully implicit solution is obtained in the procedure. Equations (103)
and (104) are evaluated in the x4y j,q-plane; introduction of the boundary con-
ditions results in a nonlinear system of algebraic equations for the primary
variables (u, p, etc.) and secondary variables (u', p', etc.) at each nodal
point in the x1’i+1-plane. The resulting system of algebraic equations is
solved by the Newton-Raphson proczdure. The solution reduces to the problem of
inverting a large matrix and thereby solving the linear system of algebraic equa-
tions for the unknowns. The large matrix is treated as a system of submatrices.
The matrix is block tridiagonal in structure since cross-flow derivatives are
represented by centered difference quotients. The submatrices along the main
diagonal are dense, whereas the off-diagonal submatrices are sparse. A schema-
tic of a typical diagonal submatrix for one xi-plane is presented in figure 4
of reference 245.

Data required for the initial planes are obtained directly in the solution
procedures at stagnation points and leading-edge attachment lines. Similarity
variables are used for the generation of these solutions. The entropy layer
effects and the procedure through which they are included in the numerical pro-
cedure are discussed in detail by Kendall et al. (ref. 245). The eddy-viscosity
model currently used is the single-layer model (see eq. (75)), where the Lewis
and Prandtl numbers are assumed constant. More general models will be incorpo-
rated into the code once it is completely operational and detailed studies have
been made of comparisons of numerical results with experimental data.

A comparison of numerical results with experimental data (ref. 292) for
flow over a sharp cone at angle of attack is presented in figure 60. Solutions
for the flow over a space shuttle are currently being obtained.

Status of Three-Dimensional Boundary-Layer Computational Techniques

Significant progress has been made in the development of numerical tech-
niques for solving the compressible three-dimensional turbulent boundary-layer
equations (see appendix, table A2); however, more efficient and reliable methods
must be developed for application to general aerospace vehicles. This becomes
clearly apparent when one considers the prohibitive computer processing times
which can occur for either complex reacting gas flows or turbulent flows over
large-scale aerospace vehicles (ref. 260). Early numerical research in the area
of compressible, three-dimensional boundary-layer flows was primarily directed
towards developing second-order-accurate, stable numerical schemes for solving
the laminar equations for flows where simplifying assumptions were possible.
Current research is directed towards (1) improving these numerical procedures
for application to complex flows, (2) developing more general coordinate sys-
tems, and (3) detailed studies of turbulence modeling procedures for three-
dimensional turbulent-boundary-layer flows. Reynolds stress models require accu-
rate experimental data where the stress components are measured. The wealth of
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two-dimensional experimental data which made possible the successful development
of two-dimensional eddy-viscosity models may provide little reliable guidance
for complex three-dimensional boundary-layer flows.

The problems associated with solving the three-dimensional inviscid equa-
tions for complex vehicles are rapidly being solved; however, efficient and reli-
able procedures for automatically coupling the inviscid and boundary-layer codes
must be developed in order to avoid time-consuming and difficult data manipula-
tion. Compatible coordinate systems must be developed for the inviscid and vis-
cous codes in order to reduce or completely eliminate the inherent errors associ-
ated with data interpolation and smoothing between coordinate systems. Current
studies and experience indicate that a nonorthogonal curvilinear coordinate sys-
tem is optimum for general three-dimensional boundary-layer flows.

Flexibility must also be programed into the boundary-layer codes which will
assure that the optimum difference scheme is utilized at various locations in
the solution domain in order to automatically satisfy the zone of dependence
requirements as well as to maximize the region over which the solution may be
obtained. Care must be exercised in order to determine whether the classical
three-dimensional boundary-layer equations are valid in a specific area where
the solution is required; that is, boundary region flow, inflow regions, and
regions of separated flow require special treatment. For these cases either the
parabolized Navier-Stokes or the full Navier-Stokes equations must be solved.

A number of difficult problems remain to be solved before compressible,
three-dimensional, turbulent, boundary-layer codes are developed to the current
confidence level of existing two-dimensional codes. An optimistic review of cur-
rent research programs, together with the increasing capabilities of digital com-
puter systems and the maturing of three-dimensional inviscid flow field codes,
indicates that general purpose, three-dimensional boundary-layer codes for com-
pressible turbulent flows will become available in the near future.

RESUME
Compressibility Influence on Turbulent Boundary-Layer Shear Stress

From comparisons of high-speed data with low-speed closure procedures using
variable mean density, there does not appear to be any appreciable influence of
compressibility upon turbulent shear stress modeling in compressible turbulent
boundary layers, even for extreme cases such as Mach 14 to 20 with a change in
density across the layer of up to a factor of 100. Other evidence of an appar-
ent lack of any compressibility-caused new physics which may alter the shear
stress for the compressible boundary-layer case includes the following:

(1) Fluctuation Mach number is generally less than 1; (2) the shear stress dis-
tribution through the boundary layer is not a function of Mach number for zero
pressure gradient flows; (3) the Morkovin hypothesis is valid up to Mach 5

(based on fluctuation data); (4) profile N power is not a function of Mach num-
ber, at least up to Mach 10; (5) the nondimensional burst period is approxi-
mately the same as that for low speed.
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Computational Capability of Existing Procedures

Compressible equilibrium and near equilibrium boundary-layer flows, at
least up to Mach 20, can be computed fairly accurately using mean field methods,
provided that the influence of such items as low Reynolds number effects, pres-
sure gradient, and wall blowing are properly accounted for through adjustments
in the modeling constants. By and large, these adjustments can be obtained from
low-speed data. Several calculation methods are available for the nonequilib-
rium case, but these have not yet received sufficient exercise on compressible
highly nonequilibrium flows (primarily as a result of lack of data) to determine
their relative or absolute accuracy.

Important Unresolved Issues

The following is a brief listing of what are the more important unresolved
issues (or research frontiers) in the calculation of compressible turbulent
boundary layers, as discussed in the present paper:

1. Considerable further development and calibration of nonequilibrium meth-
ods is required for compressible flows. Further experimental data in highly non-
equilibrium flows must be obtained before this effort can be really meaningful.

2. Definitive experiments are needed to determine directly the influence of
compressibility upon shear stress production in compressible turbulent boundary
layers (conditional sampling measurements at high Mach numbers and measurements
of fluctuating pressure terms in Reynolds stress equations).

3. Further definition is needed of the boundaries between boundary-layer
and nonboundary-layer behavior; that is, where can boundary-layer methods be
reasonably expected to work? Bradshaw addresses this with his "extra rates of
strain," but definitive guidelines are needed {(such as how much concave longitu-
dinal curvature is necessary before longitudinal vortices develop and the flow
is no longer a boundary layer). Obviously one can employ Navier-Stokes codes
and complete Reynolds stress modeling to attack such situations, but currently
the boundary-layer codes are so much faster to run on computers (as compared
with the Navier-Stokes solvers) that they should be used whenever possible; this
necessitates having well-known limits within which accurate answers can be
obtained (without new physics making either the basic equation set or the turbu-
lent modeling inapplicable).

4. Obviously, three-dimensional compressible turbulent-boundary-layer calcu-
lations are in an early stage, and considerable experimentation is necessary
before the efficacy of mean field methods for the three-dimensional case is
determined.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

April 7, 1977
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APPENDIX

SUMMARY OF CALCULATION PROCEDURES FOR NONSIMILAR TWO- AND
THREE-DIMENSIONAL COMPRESSIBLE TURBULENT BOUNDARY
LAYERS (FINITE DIFFERENCE, FINITE ELEMENT, AND
WEIGHTED RESIDUAL METHODS)

The purpose of this summary (or catalog) of numerical prediction methods is
to indicate the wide variety of such procedures which are available. (Table A1
has 31 entries.) In most cases information for the various entries were
obtained from the individual authors, who kindly filled out and returned data
sheets on their methods. Several authors have made a special effort to optimize
the numerical solution procedure (e.g., refs. 9, 12, 162, and 163) to reduce
the required machine time and storage per case. Most of the procedures have
detailed user's manuals, and in many cases the codes are available either with-
out charge or for the cost of mailing. Many of the special effects treated by
the various methods (such as nonequilibrium or equilibrium chemistry, transi-
tion, roughness, etc.) are indicated in tables A1 and A2, as is the fundamental
closure approach.

If these tables serve no other function, they should at least cause
researchers to think quite carefully before producing the 32nd entry; that is,
several of the procedures are quite similar, and future research should obvi-
ously concentrate on using the best numerical methods to investigate such items
as nonequilibrium flows, rather than on producing another compressible turbulent-
boundary-layer deck.
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Figure 12.- Prediction of flat-plate skin friction by transformation methods
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Reynolds analogy factor.)
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vehicles by Eckert's method (ref. T72).
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(b) Waisted body of revolution (experimental data from ref. 83).

Figure 20.- Prediction of boundary layer properties for turbulent flows with
pressure gradient by Flaherty's integral method (ref. 124),.
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Figure 21.- Prediction of boundary-layer properties for flows with pressure
gradients by Green's integral method (ref. 135).
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Figure 23.- Prediction of boundary-layer properties for flows with pressure

gradient using
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Figure 30.- Illustration of increasing importance of low Reynolds
number effects at high Mach number.
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Figure 33.- Comparison of static with total turbulent Prandtl number at
Mach 7.2. (Reprinted from ref. 177 with permission from the American
Institute of Aeronautics and Astronautics.)
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Figure 40.- Influence of wall blowing on turbulent skin friction
(from ref. 217).
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Figure 41.- Extent of transition zone in high speed flow. (Reprinted from
ref. 219 with permission from the American Institute of Aeronautics and
Astronautics.)
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Figure 42.- Effect of Mach number on streamwise intermittency. (Reprinted
from ref. 59 with permission from the American Institute of Aeronautics
and Astronautics.)
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Figure 43.- Comparison of transitional calculations including precursor and
low Reynolds number effects with data (from ref. 58). The profile is
near center of transition region (x = 78.7 cm).
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Figure 44.- Effects of variable entropy on wall heating data and calculations

(from ref. 221). M = 10; Ty = 1111 K; T, = 294 K; A+ = 26; K = 0.435;
(1/8)gax = 0.09; Npp ¢ = 0.9.
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Figure U45.- Application of mean field e o§gre for turbulent boundary-layer
flow with pressure gradient. K = 0.4y ‘o'z 0.016; A* = f(p*).
(Reprinted with permission from ref. \12.)
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Figure 46.- Flow conditions for data in figure U45.
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Figure U47.- Effect of fluctuating stream velocity on
mixing length (from ref. 233).

Figure 48.- Effect of fluctuating stream velocity on
Bradshaw scale (from ref. 233).

SMALL u'_ LARGE u'_
@]
— O
©a F& 8
O — C L @
O
& G N
§ - |
2B
O
| | | | | J
.5 1 1.5 0 .5 1 1.5
' ylb ylb

133



SMALL u'm LARGE u'oo
ﬁgb
| @
i 5% 8
2
04+ —
O
02 - B
I L I i j
0 5 1 1.5 0 5 | 1.5
ylb yId

Figure U49.- Effect of fluctuating stream velocity on aj

INCIDENT SHOCK WAVE

(from ref. 233).
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Figure 50.- Values of aj

through a shock--boundary-layer interaction

at Mach 3.88 (from ref. 234).
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Figure 51.- Calculation of uiu! with a turbulent boundary layer using
nonequilibrium turbulence modeling (from ref. 156).
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Figure 52.- Calculation of u'v' with a turbulent boundary layer using
nonequilibrium turbulence modeling (from ref. 156).
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Figure 53.- Schematic of geometry and flow field.
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Figure 54.- Invariant turbulence concept (from ref. 243).
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Figure 55.- Illustration of finite-difference grid schemes.
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Figure 56.- Comparison of three-dimensional prediction scheme with data (from
ref. 276) for a cone at angle of attack in a supersonic stream (d = 2.54 cm).
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Figure 56.- Concluded.
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Figure 57.- Comparison of numerical results with experimental data
(d = 2.54 cm).
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Figure 58.- Numerical results for supercritical wing.
M_=0.5; R_=1.5x 10°.
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Figure 59.- Mesh point network for integral-matrix procedure.
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Figure 60.- Comparison of numerical results with surface heating data (from
ref. 292) for a cone at angle of attack in hypersonic flow. My = 7.95;
Y =T7.95; a = 40,
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